Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. (2024). Low Exposures to Amphibole or Serpentine Asbestos in Germline Bap1-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. Cancer Res Commun, 4(4), 1004-1015.American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.CRC-23-0423.
Lee, S., Cho, Y., Li, Y., Li, R., Brown, D., McAuliffe, P., Lee, A.V., Oesterreich, S., Zervantonakis, I.K., & Osmanbeyoglu, H.U. (2024). Cancer-cell derived S100A11 promotes macrophage recruitment in ER+ breast cancer. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2024.03.21.586041.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. (2024). Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. Cancer Res Commun, 4(8), 2133-2146.American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.CRC-23-0524.
Saeed, A., Park, R., Pathak, H., Al-Bzour, A.N., Dai, J., Phadnis, M., Al-Rajabi, R., Kasi, A., Baranda, J., Sun, W., Williamson, S., Chiu, Y.C., Osmanbeyoglu, H.U., Madan, R., Abushukair, H., Mulvaney, K., Godwin, A.K.Saeed, A. (2024). Clinical and biomarker results from a phase II trial of combined cabozantinib and durvalumab in patients with chemotherapy-refractory colorectal cancer (CRC): CAMILLA CRC cohort. Nat Commun, 15(1), 1533.Springer Science and Business Media LLC. doi: 10.1038/s41467-024-45960-2.
Zhang, L., Cascio, S., Mellors, J.W., Buckanovich, R.J., & Osmanbeyoglu, H.U. (2024). Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. Commun Biol, 7(1), 20.Springer Science and Business Media LLC. doi: 10.1038/s42003-023-05733-x.
Zhang, L., Sagan, A., Qin, B., Hu, B., & Osmanbeyoglu, H.U. (2024). STAN, a computational framework for inferring spatially informed transcription factor activity across cellular contexts. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2024.06.26.600782.
Ramjattun, K., Ma, X., Gao, S.J., Singh, H., & Osmanbeyoglu, H.U. (2023). COVID-19db linkage maps of cell surface proteins and transcription factors in immune cells. JOURNAL OF MEDICAL VIROLOGY, 95(6), e28887.Wiley. doi: 10.1002/jmv.28887.
Sagan, A., Ma, X., Ramjattun, K., & Osmanbeyoglu, H.U. (2023). Linking Expression of Cell-Surface Receptors with Transcription Factors by Computational Analysis of Paired Single-Cell Proteomes and Transcriptomes. Methods Mol Biol, 2660, 149-169.Springer US. doi: 10.1007/978-1-0716-3163-8_11.
Zhang, L., Cascio, S., Mellors, J.W., Buckanovich, R.J., & Osmanbeyoglu, H.U. (2023). Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2023.06.07.544095.
Lee, S., & Osmanbeyoglu, H.U. (2022). Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas. BREAST CANCER RESEARCH, 24(1), 54.Springer Science and Business Media LLC. doi: 10.1186/s13058-022-01550-y.
Osmanbeyoglu, H.U., Palmer, D., Sagan, A., Sementino, E., Becich, M.J., & Testa, J.R. (2022). Isolated BAP1 Genomic Alteration in Malignant Pleural Mesothelioma Predicts Distinct Immunogenicity with Implications for Immunotherapeutic Response. CANCERS, 14(22), 5626.MDPI AG. doi: 10.3390/cancers14225626.
Tao, Y., Ma, X., Palmer, D., Schwartz, R., Lu, X., & Osmanbeyoglu, H.U. (2022). Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers. NUCLEIC ACIDS RESEARCH, 50(19), 10869-10881.Oxford University Press (OUP). doi: 10.1093/nar/gkac881.
Ma, X., Somasundaram, A., Qi, Z., Hartman, D.J., Singh, H., & Osmanbeyoglu, H.U. (2021). SPaRTAN, a computational framework for linking cell-surface receptors to transcriptional regulators. NUCLEIC ACIDS RESEARCH, 49(17), 9633-9647.Oxford University Press (OUP). doi: 10.1093/nar/gkab745.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Mendez, E., & Duvvuri, U. (2021). Recurrent Human Papillomavirus-Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. CLINICAL CANCER RESEARCH, 27(22), 6250-6264.American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.CCR-20-4789.
Moiseeva, T.N., Qian, C., Sugitani, N., Osmanbeyoglu, H.U., & Bakkenist, C.J. (2019). WEE1 kinase inhibitor AZD1775 induces CDK1 kinase-dependent origin firing in unperturbed G1-and S-phase cells. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(48), 23891-23893.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1915108116.
Moiseeva, T.N., Yin, Y., Calderon, M.J., Qian, C., Schamus-Haynes, S., Sugitani, N., Osmanbeyoglu, H.U., Rothenberg, E., Watkins, S.C., & Bakkenist, C.J. (2019). An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(27), 13374-13383.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1903418116.
Osmanbeyoglu, H.U., Shimizu, F., Rynne-Vidal, A., Alonso-Curbelo, D., Chen, H.A., Wen, H.Y., Yeung, T.L., Jelinic, P., Razavi, P., Lowe, S.W., Mok, S.C., Chiosis, G., Levine, D.A., & Leslie, C.S. (2019). Chromatin-informed inference of transcriptional programs in gynecologic and basal breast cancers. NATURE COMMUNICATIONS, 10(1), 4369.Springer Science and Business Media LLC. doi: 10.1038/s41467-019-12291-6.
Toska, E., Osmanbeyoglu, H.U., Castel, P., Chan, C., Hendrickson, R.C., Elkabets, M., Dickler, M.N., Scaltriti, M., Leslie, C.S., Armstrong, S.A., & Baselga, J. (2019). "PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D" (vol 363, eaaw7574, 2019). SCIENCE, 363(6425).American Association for the Advancement of Science (AAAS). doi: 10.1126/science.aaw7574.
Hmeljaki, J., Sanchez-Vega, F., Hoadley, K.A., Shih, J., Stewart, C., Heiman, D., Tarpeyg, P., Danitova, L., Drill, E., Gibb, E.A., Bowlby, R., Kanchil, R., Osmanbeyoglull, H.U., Sekido, Y., Takeshita, J., Newton, Y., Graim, K., Gupta, M., Gaylg, C.M., Diaol, L., Gibbs, D.L., Thorsson, V., Lype, L., Kanthetir, H., Severson, D.T., Ravegnini, G., Desrneules, P., Jungbluth, A.A., Travis, W.D., Dacic, S., Chirieac, L.R., Galateau-Salle, F., Fujimoto, J., Husain, A.N., Silveira, H.C., Rusch, V.W., Rintoul, R.C., Pass, H., Kindler, H., Zauderer, M.G., Kwiatkowski, D.J., Bueno, R., Tsaols, A.S., Creaney, J., Lichtenberg, T., Leraas, K., Bowen, J., Felau, I., Zenklusen, J.C., Akbanil, R., Cherniack, A.D., Byers, L.A., Noble, M.S., Fletcher, J.A., Robertsong, A.G., Shen, R., Aburatani, H., Robinson, B.W., Campbells, P., Ladanyi, M., & Network, T.C.G.A.R. (2018). Integrative Molecular Characterization of Malignant Pleural Mesothelioma. CANCER DISCOVERY, 8(12), 1548-1565.American Association for Cancer Research (AACR). doi: 10.1158/2159-8290.CD-18-0804.
Korkut, A., Zaidi, S., Kanchi, R.S., Rao, S., Gough, N.R., Schultz, A., Li, X., Lorenzi, P.L., Berger, A.C., Robertson, G., Kwong, L.N., Datto, M., Roszik, J., Ling, S., Ravikumar, V., Manyam, G., Rao, A., Shelley, S., Liu, Y., Ju, Z., Hansel, D., de Velasco, G., Pennathur, A., Andersen, J.B., O'Rourke, C.J., Ohshiro, K., Jogunoori, W., Nguyen, B.N., Li, S., Osmanbeyoglu, H.U., Ajani, J.A., Mani, S.A., Houseman, A., Wiznerowicz, M., Chen, J., Gu, S., Ma, W., Zhang, J., Tong, P., Cherniack, A.D., Deng, C., Resar, L., Weinstein, J.N., Mishra, L., Akbani, R., & Network, C.G.A.R. (2018). A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. CELL SYSTEMS, 7(4), 422-+.Elsevier BV. doi: 10.1016/j.cels.2018.08.010.
Iyer, A.S., Osmanbeyoglu, H.U., & Leslie, C.S. (2017). Computational methods to dissect gene regulatory networks in cancer. Current Opinion in Systems Biology, 2, 115-122.Elsevier BV. doi: 10.1016/j.coisb.2017.04.004.
Luo, C.T., Osmanbeyoglu, H.U., Do, M.H., Bivona, M.R., Toure, A., Kang, D., Xie, Y., Leslie, C.S., & Li, M.O. (2017). Ets transcription factor GABP controls T cell homeostasis and immunity. NATURE COMMUNICATIONS, 8(1), 1062.Springer Science and Business Media LLC. doi: 10.1038/s41467-017-01020-6.
Nargund, A.M., Osmanbeyoglu, H.U., Cheng, E.H., & Hsieh, J.J. (2017). SWI/SNF tumor suppressor gene PBRM1/BAF180 in human clear cell kidney cancer. Mol Cell Oncol, 4(4), e1342747.Informa UK Limited. doi: 10.1080/23723556.2017.1342747.
Osmanbeyoglu, H.U., Toska, E., Chan, C., Baselga, J., & Leslie, C.S. (2017). Pancancer modelling predicts the context-specific impact of somatic mutations on transcriptional programs. NATURE COMMUNICATIONS, 8(1), 14249.Springer Science and Business Media LLC. doi: 10.1038/ncomms14249.
Toska, E., Osmanbeyoglu, H.U., Castel, P., Chan, C., Hendrickson, R.C., & Elkabets, M. (2017). PI3K SIGNALING REGULATES ER ACTIVITY VIA KMT2D IN ER+ BREAST CANCER. CANCER DISCOVERY, 7(5), 455.
Toska, E., Osmanbeyoglu, H.U., Castel, P., Chan, C., Hendrickson, R.C., Elkabets, M., Dickler, M.N., Scaltriti, M., Leslie, C.S., Armstrong, S.A., & Baselga, J. (2017). CANCER THERAPY PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. SCIENCE, 355(6331), 1324-1329.American Association for the Advancement of Science (AAAS). doi: 10.1126/science.aah6893.
Watters, R.J., Hartmaier, R.J., Osmanbeyoglu, H.U., Gillihan, R.M., Rae, J.M., Liao, L., Chen, K., Li, W., Lu, X., & Oesterreich, S. (2017). Steroid receptor coactivator-1 can regulate osteoblastogenesis independently of estrogen. MOLECULAR AND CELLULAR ENDOCRINOLOGY, 448(C), 21-27.Elsevier BV. doi: 10.1016/j.mce.2017.03.005.
Feng, Y., van der Veeken, J., Shugay, M., Putintseva, E.V., Osmanbeyoglu, H.U., Dikiy, S., Hoyos, B.E., Moltedo, B., Hemmers, S., Treuting, P., Leslie, C.S., Chudakov, D.M., & Rudensky, A.Y. (2015). A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. NATURE, 528(7580), 132-+.Springer Science and Business Media LLC. doi: 10.1038/nature16141.
Osmanbeyoglu, H.U., Pelossof, R., Bromberg, J.F., & Leslie, C.S. (2014). Linking signaling pathways to transcriptional programs in breast cancer. GENOME RESEARCH, 24(11), 1869-1880.Cold Spring Harbor Laboratory. doi: 10.1101/gr.173039.114.
Osmanbeyoglu, H.U., Lu, K.N., Oesterreich, S., Day, R.S., Benos, P.V., Coronnello, C., & Lu, X. (2013). Estrogen represses gene expression through reconfiguring chromatin structures. NUCLEIC ACIDS RESEARCH, 41(17), 8061-8071.Oxford University Press (OUP). doi: 10.1093/nar/gkt586.
Kohle-Ersher, A., Chatterjee, P., Osmanbeyoglu, H.U., Hochheiser, H., & Bartos, C. (2012). Evaluating the Barriers to Point-of-Care Documentation for Nursing Staff. CIN-COMPUTERS INFORMATICS NURSING, 30(3), 126-133.Ovid Technologies (Wolters Kluwer Health). doi: 10.1097/NCN.0b013e3182343f14.
Osmanbeyoglu, H.U., Hartmaier, R.J., Oesterreich, S., & Lu, X. (2012). Improving ChIP-seq peak-calling for functional co-regulator binding by integrating multiple sources of biological information. BMC GENOMICS, 13(Suppl 1), S1.Springer Science and Business Media LLC. doi: 10.1186/1471-2164-13-S1-S1.
Osmanbeyoglu, H.U., & Ganapathiraju, M.K. (2011). N-gram analysis of 970 microbial organisms reveals presence of biological language models. BMC BIOINFORMATICS, 12(1), 12.Springer Science and Business Media LLC. doi: 10.1186/1471-2105-12-12.
Chalancon, G., Kosloff, M., Osmanbeyoglu, H.U., & Saraswathi, S. (2010). PLoS Computational Biology Conference Postcards from ISMB 2010. PLOS COMPUTATIONAL BIOLOGY, 6(11), e1002000.Public Library of Science (PLoS). doi: 10.1371/journal.pcbi.1002000.
Osmanbeyoglu, H.U., Wehner, J.A., Carbonell, J.G., & Ganapathiraju, M.K. (2010). Active machine learning for transmembrane helix prediction. BMC BIOINFORMATICS, 11(Suppl 1), S58.Springer Science and Business Media LLC. doi: 10.1186/1471-2105-11-S1-S58.
Osmanbeyoglu, H.U., Hur, T.B., & Kim, H.K. (2009). Thin alumina nanoporous membranes for similar size biomolecule separation. JOURNAL OF MEMBRANE SCIENCE, 343(1-2), 1-6.Elsevier BV. doi: 10.1016/j.memsci.2009.07.027.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563850.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563832.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Table S1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563814.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Table S2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563811.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 7 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563835.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S5 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563820.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 3 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563847.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563853.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S4 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563823.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S3 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563826.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S6 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563817.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563829.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 5 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563841.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S6 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563817.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Table S1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563814.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563850.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S4 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563823.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Data from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.c.7171072.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 4 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563844.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563829.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 6 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563838.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Data from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.c.7171072.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563832.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 3 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563847.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 6 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563838.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Table S2 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563811.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 4 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563844.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S3 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563826.v1.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 5 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563841.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 7 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563835.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. Supplementary Figure S5 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563820.
Kadariya, Y., Sementino, E., Ruan, M., Cheung, M., Hadikhani, P., Osmanbeyoglu, H.U., Klein-Szanto, A.J., Cai, K., & Testa, J.R. FIGURE 1 from Low Exposures to Amphibole or Serpentine Asbestos in Germline <i>Bap1</i>-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.25563853.
Lee, S., & Osmanbeyoglu, H.U. Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas. Cold Spring Harbor Laboratory. doi: 10.1101/2022.04.08.487589.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764404.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764419.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764398.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Data from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.c.7405875.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764389.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764392.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764413.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764407.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764392.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764416.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764401.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764416.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 4 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764413.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764422.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764395.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764389.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 6 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764386.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764398.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 6 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764386.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764377.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764410.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764377.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Data from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.c.7405875.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 8 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764380.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764401.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764404.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 8 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764380.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 5 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764410.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 7 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764383.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 2 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764419.v1.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 7 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764383.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Table 3 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764395.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764422.
Ma, X., Lembersky, D., Kim, E.S., Becich, M.J., Testa, J.R., Bruno, T.C., & Osmanbeyoglu, H.U. Supplementary Figure 1 from Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. American Association for Cancer Research (AACR). doi: 10.1158/2767-9764.26764407.
Ma, X., Lembersky, D., Kim, E.S., Bruno, T.C., Testa, J.R., & Osmanbeyoglu, H.U. Spatial landscape of malignant pleural and peritoneal mesothelioma tumor immune microenvironment. Cold Spring Harbor Laboratory. doi: 10.1101/2023.09.06.556559.
Ma, X., Somasundaram, A., Qi, Z., Singh, H., & Osmanbeyoglu, H.U. SPaRTAN, a computational framework for linking cell-surface receptors to transcriptional regulators. Cold Spring Harbor Laboratory. doi: 10.1101/2020.12.22.423961.
Osmanbeyoglu, H.U., Palmer, D., Sagan, A., Sementino, E., & Testa, J.R. Isolated BAP1 loss in malignant pleural mesothelioma predicts immunogenicity with implications for immunotherapeutic response. Cold Spring Harbor Laboratory. doi: 10.1101/2022.05.06.490947.
Ramjattun, K., Ma, X., Gao, S.J., Singh, H., & Osmanbeyoglu, H.U. COVID-19db linkage maps of cell surface proteins and transcription factors in immune cells. Cold Spring Harbor Laboratory. doi: 10.1101/2022.12.14.520411.
Sugitani, N., Vendetti, F.P., Cipriano, A.J., Pandya, P., Deppas, J.J., Moiseeva, T.N., Schamus-Haynes, S., Wang, Y., Palmer, D., Osmanbeyoglu, H.U., Bostwick, A., Snyder, N.W., Gong, Y.N., Aird, K.M., Delgoffe, G.M., Beumer, J.H., & Bakkenist, C.J. Thymidine rescues ATR kinase inhibition induced deoxyuridine contamination in genomic DNA, cell death, and Type 1 interferon expression. Cold Spring Harbor Laboratory. doi: 10.1101/2022.02.24.481821.
Tao, Y., Ma, X., Palmer, D., Schwartz, R., Lu, X., & Osmanbeyoglu, H.U. Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers. Cold Spring Harbor Laboratory. doi: 10.1101/2021.09.07.459263.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. Supplemental Figures from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.22480272.v1.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. SupplementaryTables from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.22480269.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. Graphical Abstract from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.22480275.v1.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. Data from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.c.6530409.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. Graphical Abstract from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.22480275.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. Data from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.c.6530409.v1.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. SupplementaryTables from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.22480269.v1.
Vyas, A., Harbison, R.A., Faden, D.L., Kubik, M., Palmer, D., Zhang, Q., Osmanbeyoglu, H.U., Kiselyov, K., Méndez, E., & Duvvuri, U. Supplemental Figures from Recurrent Human Papillomavirus–Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. American Association for Cancer Research (AACR). doi: 10.1158/1078-0432.22480272.
Osmanbeyoglu, H.U., & Leslie, C. (2017). Modeling the impact of mutations in ubiquitin pathway genes across human cancers. In CANCER RESEARCH, 77(13_Supplement).American Association for Cancer Research (AACR). doi: 10.1158/1538-7445.AM2017-LB-010.
Osmanbeyoglu, H.U., Toska, E., Baselga, J., & Leslie, C. (2016). Modeling the impact of somatic alterations across human cancers. In CANCER RESEARCH, 76(14_Supplement), (p. 781).American Association for Cancer Research (AACR). doi: 10.1158/1538-7445.AM2016-781.