Goodman, A., Sanguinito, S., Kutchko, B., Natesakhawat, S., Cvetic, P., & Allen, A.J. (2020). Shale pore alteration: Potential implications for hydrocarbon extraction and CO2 storage. FUEL, 265, 116930.Elsevier BV. doi: 10.1016/j.fuel.2019.116930.
Kutchko, B., Sanguinito, S., Natesakhawat, S., Cvetic, P., Culp, J.T., & Goodman, A. (2020). Quantifying pore scale and matrix interactions of SCCO2 with the Marcellus shale. FUEL, 266, 116928.Elsevier BV. doi: 10.1016/j.fuel.2019.116928.
Popczun, E.J., Tafen, D.N., Natesakhawat, S., Marin, C.M., Nguyen-Phan, T.D., Zhou, Y., Alfonso, D., & Lekse, J.W. (2020). Temperature tunability in Sr1−xCaxFeO3−δ for reversible oxygen storage: a computational and experimental study. Journal of Materials Chemistry A, 8(5), 2602-2612.Royal Society of Chemistry (RSC). doi: 10.1039/c9ta09307a.
Goodman, A., Sanguinito, S., Tkach, M., Natesakhawat, S., Kutchko, B., Fazio, J., & Cvetic, P. (2019). Investigating the role of water on CO2-Utica Shale interactions for carbon storage and shale gas extraction activities - Evidence for pore scale alterations. FUEL, 242, 744-755.Elsevier BV. doi: 10.1016/j.fuel.2019.01.091.
Sanguinito, S., Goodman, A., Tkach, M., Kutchko, B., Culp, J., Natesakhawat, S., Fazio, J., Fukai, I., & Crandall, D. (2018). Quantifying dry supercritical CO2-induced changes of the Utica Shale. FUEL, 226, 54-64.Elsevier BV. doi: 10.1016/j.fuel.2018.03.156.
McGann, J.P., Zhong, M., Kim, E.K., Natesakhawat, S., Jaroniec, M., Whitacre, J.F., Matyjaszewski, K., & Kowalewski, T. (2017). Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. In Chemical synthesis and applications of graphene and carbon materials. (pp. 1-19).Wiley. doi: 10.1002/9783527648160.ch1.
Zhang, J., Yuan, R., Natesakhawat, S., Wang, Z., Zhao, Y., Yan, J., Liu, S., Lee, J., Luo, D., Gottlieb, E., Kowalewski, T., Bockstaller, M.R., & Matyjaszewski, K. (2017). Individual Nanoporous Carbon Spheres with High Nitrogen Content from Polyacrylonitrile Nanoparticles with Sacrificial Protective Layers. ACS APPLIED MATERIALS & INTERFACES, 9(43), 37804-37812.American Chemical Society (ACS). doi: 10.1021/acsami.7b11910.
Natesakhawat, S., Means, N.C., Howard, B.H., Smith, M., Abdelsayed, V., Baltrus, J.P., Cheng, Y., Lekse, J.W., Link, D., & Morreale, B.D. (2015). Improved benzene production from methane dehydroaromatization over Mo/HZSM-5 catalysts via hydrogen-permselective palladium membrane reactors. CATALYSIS SCIENCE & TECHNOLOGY, 5(11), 5023-5036.Royal Society of Chemistry (RSC). doi: 10.1039/c5cy00934k.
He, H., Li, W., Lamson, M., Zhong, M., Konkolewicz, D., Hui, C.M., Yaccato, K., Rappold, T., Sugar, G., David, N.E., Damodaran, K., Natesakhawat, S., Nulwala, H., & Matyjaszewski, K. (2014). Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture. POLYMER, 55(1), 385-394.Elsevier BV. doi: 10.1016/j.polymer.2013.08.002.
Lekse, J.W., Natesakhawat, S., Alfonso, D., & Matranga, C. (2014). An experimental and computational investigation of the oxygen storage properties of BaLnFe2O5+δ and BaLnCo2O5+δ (Ln = La, Y) perovskites. JOURNAL OF MATERIALS CHEMISTRY A, 2(7), 2397-2404.Royal Society of Chemistry (RSC). doi: 10.1039/c3ta13257a.
Kutchko, B.G., Goodman, A.L., Rosenbaum, E., Natesakhawat, S., & Wagner, K. (2013). Characterization of coal before and after supercritical CO2 exposure via feature relocation using field-emission scanning electron microscopy. FUEL, 107, 777-786.Elsevier BV. doi: 10.1016/j.fuel.2013.02.008.
Natesakhawat, S., Jr, O.P.R., Howard, B.H., Lekse, J.W., Baltrus, J.P., & Matranga, C. (2013). Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide. TOPICS IN CATALYSIS, 56(18-20), 1752-1763.Springer Science and Business Media LLC. doi: 10.1007/s11244-013-0111-5.
Wang, C., Ranasingha, O., Natesakhawat, S., Jr, O.P.R., Andio, M., Lewis, J.P., & Matranga, C. (2013). Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. NANOSCALE, 5(15), 6968-6974.Royal Society of Chemistry (RSC). doi: 10.1039/c3nr02001k.
Jr, O.P.R., Natesakhawat, S., Baltrus, J.P., Howard, B., & Brown, T.D. (2012). Characterization of optical, chemical, and structural changes upon reduction of sol-gel deposited SnO2 thin films for optical gas sensing at high temperatures. THIN SOLID FILMS, 520(19), 6243-6249.Elsevier BV. doi: 10.1016/j.tsf.2012.05.023.
Jr, O.P.R., Wang, C., Natesakhawat, S., Baltrus, J.P., & Brown, T.D. (2012). In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures. JOURNAL OF APPLIED PHYSICS, 111(6).AIP Publishing. doi: 10.1063/1.3695380.
McGann, J.P., Zhong, M., Kim, E.K., Natesakhawat, S., Jaroniec, M., Whitacre, J.F., Matyjaszewski, K., & Kowalewski, T. (2012). Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. MACROMOLECULAR CHEMISTRY AND PHYSICS, 213(10-11), 1078-1090.Wiley. doi: 10.1002/macp.201100691.
Natesakhawat, S., Lekse, J.W., Baltrus, J.P., Jr, O.P.R., Howard, B.H., Deng, X., & Matranga, C. (2012). Active Sites and Structure-Activity Relationships of Copper-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol. ACS CATALYSIS, 2(8), 1667-1676.American Chemical Society (ACS). doi: 10.1021/cs300008g.
Zhong, M., Natesakhawat, S., Baltrus, J.P., Luebke, D., Nulwala, H., Matyjaszewski, K., & Kowalewski, T. (2012). Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture. CHEMICAL COMMUNICATIONS, 48(94), 11516-11518.Royal Society of Chemistry (RSC). doi: 10.1039/c2cc36652e.
Culp, J.T., Natesakhawat, S., Smith, M.R., Bittner, E., Matranga, C., & Bockrath, B. (2008). Hydrogen storage properties of rigid three-dimensional Hofmann clathrate derivatives: The effects of pore size. JOURNAL OF PHYSICAL CHEMISTRY C, 112(17), 7079-7083.American Chemical Society (ACS). doi: 10.1021/jp710996y.
Khan, N.A., Natesakhawat, S., Matranga, C., Sanders, T., & Veser, G. (2007). Effects of residual surfactants on the chemistry of nanostructured barium hexaaluminate type catalysts. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 233, 423.
Liu, J., Culp, J.T., Natesakhawat, S., Bockrath, B.C., Zande, B., Sankar, S.G., Garberoglio, G., & Johnson, J.K. (2007). Experimental and theoretical studies of gas adsorption in Cu3(BTC)2:: An effective activation procedure. JOURNAL OF PHYSICAL CHEMISTRY C, 111(26), 9305-9313.American Chemical Society (ACS). doi: 10.1021/jp071449i.
Natesakhawat, S., Culp, J.T., Matranga, C., & Bockrath, B. (2007). Adsorption properties of hydrogen and carbon dioxide in Prussian blue analogues M3[Co(CN)6]2, M = Co, Zn. JOURNAL OF PHYSICAL CHEMISTRY C, 111(2), 1055-1060.American Chemical Society (ACS). doi: 10.1021/jp065845x.
Natesakhawat, S., Wang, X., Zhang, L., & Ozkan, U.S. (2006). Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 260(1-2), 82-94.Elsevier BV. doi: 10.1016/j.molcata.2006.07.013.
Natesakhawat, S., Oktar, M., & Ozkan, U.S. (2005). Effect of lanthanide promotion on catalytic performance of sol-gel Ni/Al2O3 catalysts in steam reforming of propane. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 241(1-2), 133-146.Elsevier BV. doi: 10.1016/j.molcata.2005.07.017.
Natesakhawat, S., Watson, R.B., Wang, X.Q., & Ozkan, U.S. (2005). Deactivation characteristics of lanthanide-promoted sol-gel Ni/Al2O3 catalysts in propane steam reforming. JOURNAL OF CATALYSIS, 234(2), 496-508.Elsevier BV. doi: 10.1016/j.jcat.2005.07.014.
Goodwin, J.G., Natesakhawat, S., Nikolopoulos, A.A., & Kim, S.Y. (2002). Etherification on zeolites: MTBE synthesis. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 44(2), 287-320.Informa UK Limited. doi: 10.1081/CR-120003496.
Sanguinito, S., Cvetic, P., Goodman, A., Kutchko, B., & Natesakhawat, S. (2019). CO2-Shale Reactivity at the Matrix-Fracture Interface. In Proceedings of the 7th Unconventional Resources Technology Conference.American Association of Petroleum Geologists. doi: 10.15530/urtec-2019-948.
Zhou, Y., Natesakhawat, S., Nguyen-Phan, T.D., Kauffman, D.R., Marin, C.M., Kisslinger, K., Lin, R., Xin, H.L., Stavitski, E., Attenkofer, K., Tang, Y., Guo, Y., Waluyo, I., Roy, A., Lekse, J.W., Yu, Y., Baltrus, J., Lu, Y., Matranga, C., & Wang, C. (2019). Highly Active and Stable Carbon Nanosheets Supported Iron Oxide for Fischer-Tropsch to Olefins Synthesis. In CHEMCATCHEM, 11(6), (pp. 1625-1632).Wiley. doi: 10.1002/cctc.201802022.
Goodman, A., Sanguinito, S., Kutchko, B., Natesakhawat, S., & Culp, J. (2018). Characterization of the CO2-Fluid-Shale Interface Via Feature Relocation Using Field-Emission Scanning Electron Microscopy, in Situ Infrared Spectroscopy, and Pore Size Analysis. In SPE Eastern Regional Meeting, 2018-October.
Sanguinito, S., Goodman, A.L., Kutchko, B.G., Tkach, M., Natesakhawat, S., Crandall, D., Fazio, J., & Fukai, I. (2017). Characterizing the Geochemistry of the CO
Granite, E., Roth, E., Natesakhawat, S., Stanko, D., & Thomas, C. (2014). Development of surface area during pyrolysis and combustion of lignite. In 31st Annual International Pittsburgh Coal Conference: Coal - Energy, Environment and Sustainable Development, PCC 2014.
Natesakhawat, S., & Morreale, B. (2010). Hydrogenation of carbon dioxide to methanol over multicomponent copper-based catalysts. In ACS National Meeting Book of Abstracts.
Zhang, Y., Natesakhawat, S., Matranga, C., & Veser, G. (2008). Kinetic phenomena in low-temperature CO oxidation on nanostructured Pt catalysts. AIChE Annual Meeting.Philadelphia.
Zhang, Y., Natesakhawat, S., Sanders, T., Matranga, C., & Veser, G. (2008). Exceptional activity of nanostructured PT catalysts in low-temperature co oxidation. International Pittsburgh Coal Conference.Pittsburgh, PA.
Culp, J.T., Natesakhawat, S., Smith, M.R., Bittner, E.W., Matranga, C., & Bockrath, B.C. (2007). Effects of pore size on the adsorption of hydrogen in slit pores of constant width and varying height. In ACS National Meeting Book of Abstracts.
Liu, J., Johnson, K., Culp, J., Natesakhawat, S., Bockrath, B., Sankar, S.G., Zande, B., & Garberoglio, G. (2007). Experimental and theoretical studies of gas adsorption in Cu
Zhang, Y., Natesakhawat, S., Sanders, T., Matranga, C., & Veser, G. (2007). High reactivity of Pt-Bha nanocomposite catalysts for combustion reactions. AICHE Annual Meeting.Salt Lake City, UT.
Natesakhawat, S., Matranga, C., Culp, J.T., & Bockrath, B. (2006). Exchange kinetics of hydrogen and carbon dioxide in Prussian Blue analogs M3[Co(CN)6]2 (M = Co, Zn). In ACS National Meeting Book of Abstracts, 232.
Natesakhawat, S., Zhang, L., Wang, X., & Ozkan, U.S. (2005). Hydrogen production via the high-temperature water-gas shift reaction over chromium-free iron-based catalysts. In ACS Division of Fuel Chemistry, Preprints, 50(1), (pp. 269-270).
Natesakhawat, S., Zhang, L.Z., Wang, X.Q., & Ozkan, U.S. (2005). Hydrogen production via the high-temperature water-gas shift reaction over chromium-free iron-based catalysts. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 229(1), (p. U868).
Natesakhawat, S., Wang, X., & Ozkan, U.S. (2004). High-temperature water-gas shift reaction over Cr-free Fe-Al catalysts promoted with first row transition metals. In AIChE Annual Meeting, Conference Proceedings, (pp. 507-509).
Natesakhawat, S., Wang, X., & Ozkan, U.S. (2004). High-temperature water-gas shift reaction over Cr-free Fe-Al catalysts promoted with first row transition metals. In AIChE Annual Meeting, Conference Proceedings.
Natesakhawat, S., Oktar, O., & Ozkan, U.S. (2003). Lanthanide-promoted sol-gel Ni-based catalysts for steam reforming of propane. In ACS Division of Fuel Chemistry, Preprints, 48(2), (pp. 852-853).