Pitt | Swanson Engineering

Join With Us In Celebrating Our Fall 2020 Graduating Class! 


The Chemical and Petroleum Engineering department at the University of Pittsburgh Swanson School of Engineering was established in 1910, making it the first department for petroleum engineering in the world. Today, our department has over 40 expert faculty (tenure/tenure-stream/joint/adjunct), a host of dedicated staff, more than 20 state-of-the-art laboratories and learning centers, and education programs that enrich with strong fundamentals and hands-on experience.

Chemical engineering is concerned with processes in which matter and energy undergo change. The range of concerns is so broad that the chemical engineering graduate is prepared for a variety of interesting and challenging employment opportunities.

Chemical engineers with strong background in sciences are found in management, design, operations, and research. Chemical engineers are employed in almost all industries, including food, polymers, chemicals, pharmaceutical, petroleum, medical, materials, and electronics. Since solutions to energy, environmental, and food problems must surely involve chemical changes, there will be continued demands for chemical engineers in the future.

Read our latest newsletter below



Jan
13
2021

Breathing Easier with a Better Tracheal Stent

Bioengineering, Chemical & Petroleum, MEMS

PITTSBURGH (Jan. 13, 2021) — Pediatric laryngotracheal stenosis (LTS), a narrowing of the airway in children, is a complex medical condition. While it can be something a child is born with or caused by injury, the condition can result in a life-threatening emergency if untreated. Treatment, however, is challenging. Depending on the severity, doctors will use a combination of endoscopic techniques, surgical repair, tracheostomy, or deployment of stents to hold the airway open and enable breathing. While stents are great at holding the airway open and simultaneously allowing the trachea to continue growing, they can move around, or cause damage when they’re eventually removed. New research published in Communications Biology and led by the University of Pittsburgh is poised to drastically improve the use of stents, demonstrating for the first time the successful use of a completely biodegradable magnesium-alloy tracheal stent that avoids some of these risks. “Using commercial non-biodegradable metal or silicone based tracheal stents has a risk of severe complications and doesn't achieve optimal clinical outcomes, even in adults,” said Prashant N. Kumta, Edward R. Weidlein Chair Professor of bioengineering at the Swanson School of Engineering. “Using advanced biomaterials could offer a less invasive, and more successful, treatment option.” In the study, the balloon-expandable ultra-high ductility (UHD) biodegradable magnesium stent was shown to perform better than current metallic non-biodegradable stents in use in both in lab testing and in rabbit models. The stent was shown to keep the airway open over time and have low degradation rates, displaying normal healing and no adverse problems. “Our results are very promising for the use of this novel biodegradable, high ductility metal stent, particularly for pediatric patients,” said Kumta, who also holds appointments in Chemical and Petroleum Engineering, Mechanical Engineering and Materials Science, and the McGowan Institute for Regenerative Medicine. “We hope this new approach leads to new and improved treatments for patients with this complex condition as well as other tracheal obstruction conditions including tracheal cancer.” The paper, “In-vivo efficacy of biodegradable ultrahigh ductility Mg-Li-Zn alloy tracheal stents for pediatric airway obstruction,” (DOI: 10.1038/s42003-020-01400-7), was authored by the Swanson School’s Jingyao Wu, Abhijit Roy, Bouen Lee, Youngjae Chun, William R. Wagner, and Prashant N. Kumta; UPMC’s Leila Mady, Ali Mübin Aral, Toma Catalin, Humberto E. Trejo Bittar, and David Chi; and Feng Zheng and Ke Yang from The Institute of Metal Research at the Chinese Academy of Sciences.
Maggie Pavlick
Jan
12
2021

“Bluetooth Bacteria” Wins a Gold Medal at iGEM 2020

Bioengineering, Chemical & Petroleum, Student Profiles

PITTSBURGH (January 12, 2021) … Wi-Fi and Bluetooth technology have provided an invaluable connection to the workplace and the outside world as we remained sheltered at home in 2020. As part of a virtual research competition, a team of University of Pittsburgh undergraduates explored if a comparable equivalent to this ubiquitous technology could allow scientists to wirelessly manipulate cell behavior and control gene expression. The group pitched this idea for the 2020 International Genetically Engineered Machine (iGEM) competition, an annual synthetic biology research competition in which teams from around the world design and carry out projects to solve an open research or societal problem. More than 250 teams participated in the organization’s first Virtual Giant Jamboree, and the Pitt undergraduate group received a gold medal for their project titled “Bluetooth Bacteria.” This year’s group was also one of three teams that were nominated for “Best Foundational Advance Project.”  This is the first time a Pitt iGEM team has been nominated for an award at the iGEM competition. The team included one Swanson School of Engineering student: Lia Franco, a chemical engineering junior. Other members included Sabrina Catalano, a senior molecular biology student; Dara Czernikowski, a senior biological sciences student; Victor So, a senior microbiology and English literature student; and Chenming (Angel) Zheng, a junior molecular biology student. “This sort of non-invasive technology could be used for timed drug release, synthetic organ and neuron stimulation, or even industrial applications,” Czernikowski said. “We first considered optogenetics, which uses light to manipulate cell behavior, but this strategy cannot target deep tissue without risky invasive methods so we needed to change our approach.” The team ultimately decided to attach magnetic nanoparticles to the surface of bacteria and stimulate them with an alternating magnetic field (AMF). The nanoparticles react to the AMF stimulation and dissipate heat, causing the temperature of the bacterium’s cytoplasm to rise. They then used a protein dimer to act as a “bio-switch” to control gene expression. “At lower temperatures, the protein dimers bind to a target DNA sequence and turn off gene expression, but at higher temperatures, heat causes the proteins to un-dimerize,” Catalano explained. “In its un-dimerized state, it can no longer inhibit gene expression, turning the system on. The change in temperature is controlled by the stimulation of magnetic nanoparticles with AMF, allowing wireless control of gene expression in bacteria.” The team hopes that there is therapeutic potential for their design but recognizes that they need to improve spatial control in order to match techniques like optogenetics. They would like to improve their design to use localized heating that could selectively target one bacterium or a specific region of the cytoplasm. They plan to continue development during the upcoming semester. “The iGEM competition is a unique experience where undergraduates take charge and develop and execute their own research idea, with close mentorship from a set of faculty mentors,” said W. Seth Childers, assistant professor of chemistry at Pitt and one of five faculty advisors for the Bluetooth Bacteria team. “This year’s team worked hard under the stress of a pandemic to bring together engineering and biology concepts to consider how one could wirelessly control a bacterium.” Another unique aspect of their project is the “Bluetooth Bacteria Podcast” – a casual and conversational podcast that seeks to educate the general population on topics and current developments in synthetic biology. “One of our main project goals was effective science communication,” said Catalano. “Because COVID-19 limited our ability to teach synthetic biology in person, we thought it would be fun to make a podcast as it is accessible to a wide audience. It gave us the opportunity to hear from iGEM teams all over the world, including France, London, and India.” The team published two episodes every week, and they are available on Apple Podcast or Spotify. The other faculty advisors include Alex Deiters, professor of chemistry; Jason Lohmueller, assistant professor of surgery and immunology; Jason Shoemaker, assistant professor of chemical and petroleum engineering; and Sanjeev Shroff, Distinguished Professor and Gerald E. McGinnis Chair of Bioengineering. # # # The team was sponsored by the University of Pittsburgh, Pitt’s Swanson School of Engineering, Pitt’s Department of Bioengineering, the Richard King Mellon Foundation, Open Philanthropy, Integrated DNA Technologies, TWIST Bioscience, GenScript, Ginkgo Bioworks, Benchling, Revive & Restore, SnapGene, MathWorks, New England BioLabs Inc., and Promega. Photo caption: (from left) Sabrina Catalano, Dara Czernikowski, Lia Franco, Victor So, and Chenming (Angel) Zheng.

Jan
5
2021

Defining the Future of Chemical Engineering

Chemical & Petroleum

PITTSBURGH (Jan. 5, 2021) — Two professors in the University of Pittsburgh Swanson School of Engineering are featured in a special “Futures” issue of the AIChE Journal. Research from Giannis “Yanni” Mpourmpakis and John Keith, associate professors of chemical and petroleum engineering, is featured in the special issue that highlights the research of emerging scholars in chemical engineering. “Much of the future of chemical engineering lies in computational chemistry, and John and Yanni are at the forefront of this research,” said Steven Little, William Kepler Whiteford Endowed Professor and chair of the Department of Chemical and Petroleum Engineering. “It’s no surprise that they were featured in this exciting special issue.” Computational Screening for Catalysts Catalysts are important in the production of industrial chemicals. Experimentally finding sites on atoms for catalysts to bind, however, is an arduous and costly endeavor. Research from the lab of John Keith analyzes errors in alchemical perturbation density functional theory (APDFT), a method that uses a computer model to screen atoms for hypothetical catalyst sites more quickly and with lower cost than trial-and-error experiments in a lab. The researchers used machine learning to correct the prediction errors that occurred in the program, resulting in more than 500 times more hypothetical alloys than the previous model. Their research provides a recipe for developing other machine learning-based APDFT models. The paper, “Machine Learning Corrected Alchemical Perturbation Density Functional Theory for Catalysis Applications,” (DOI: 10.1002/aic.17041) was authored by Charles D. Griego, Lingyan Zhao, Karthikeyan Saravanan, and John Keith. Understanding Zeolites Zeolites are porous, aluminosilicate materials that are used for an array of applications in the chemical industry, including separations, catalysis, and ion exchange. Despite their widespread use, zeolite growth is still not well understood. Featured research led by Giannis Mpourmpakis’s CANELa lab at Pitt uses density functional theory calculations to understand the thermodynamics of oligomerization, which constitutes the initial stage of zeolite growth. The researchers were able to determine that the growth of aluminosilicate systems is energetically more preferred than their pure silicate counterparts and elucidate the effect of different cations on these energetics. They also suggest that the formation of small complexes at the initial growth steps can have a significant impact on the final zeolite structure. Understanding how zeolites form is central to controlling their final structure, such as pore size distribution and chemical composition, since these properties determine to a large extent their overall application behavior. The paper, “Understanding Initial Zeolite Oligomerization Steps with First Principles Calculations,” (DOI: 10.1002/aic.17107) was authored by Emily E. Freeman and Giannis Mpourmpakis from Pitt, James J. Neeway and Radha Kishan Motkuri from the Pacific Northwest National Lab; and Jeffrey D. Rimer from the University of Houston. This work is funded by the Department of Energy, Nuclear Energy University Program and the computations were performed in Pitt’s Center for Research Computing.
Maggie Pavlick
Dec
18
2020

Shifting Gears Toward Chemical Machines

Chemical & Petroleum

PITTSBURGH (December 18, 2020) … The gear is one of the oldest mechanical tools in human history1 and led to machines ranging from early irrigation systems and clocks, to modern engines and robotics. For the first time, researchers at the University of Pittsburgh Swanson School of Engineering have utilized a catalytic reaction that causes a two-dimensional, chemically-coated sheet to spontaneously “morph” into a three-dimensional gear that performs sustained work.The findings indicate the potential to develop chemically driven machines that do not rely on external power, but simply require the addition of reactants to the surrounding solution. Published today in the Cell Press journal Matter (DOI: 10.1016/j.matt.2020.11.04), the research was developed by Anna C. Balazs, Distinguished Professor of Chemical and Petroleum Engineering and the John A. Swanson Chair of Engineering. Lead author is Abhrajit Laskar and co-author is Oleg E. Shklyaev, both post-doctoral associates. “Gears help give machines mechanical life; however, they require some sort of external power, such as steam or electricity, to perform a task. This limits the potential of future machines operating in resource-poor or remote environments,” Balazs explains. “Abhrajit’s computational modeling has shown that chemo-mechanical transduction (conversion of chemical energy into motion) at active sheets presents a novel way to replicate the behavior of gears in environments without access to traditional power sources.”In the simulations, catalysts are placed at various points on a two-dimensional sheet resembling a wheel with spokes, with heavier nodes on the sheet’s circumference. The flexible sheet, approximately a millimeter in length, is then placed in a fluid-filled microchamber. A reactant is added to the chamber that activates the catalysts on the flat “wheel”, thereby causing the fluid to spontaneously flow. The inward fluid flow drives the lighter sections of the sheet to pop up, forming an active rotor that catches the flow and rotates. “What is really distinctive about this research is the coupling of deformation and propulsion to modify the object’s shape to create movement,” Laskar says. “Deformation of the object is key; we see in nature that organisms use chemical energy to change their shape and move. For our chemical sheet to move, it also has to spontaneously morph into a new shape, which allows it to catch the fluid flow and perform its function.”Additionally, Laskar and Shklyaev found that not all the gear parts needed to be chemically active for motion to occur; in fact, asymmetry is crucial to create movement. By determining the design rules for the placement, Laskar and Shklyaev could direct the rotation to be clockwise or counterclockwise. This added “program” enabled the control of independent rotors to move sequentially or in a cascade effect, with active and passive gear systems. This more complex action is controlled by the internal structure of the spokes, and the placement within the fluid domain.“Because a gear is a central component to any machine, you need to start with the basics, and what Abhrajit has created is like an internal combustion engine at the millimeter scale,” Shklyaev says. “While this won’t power your car, it does present the potential to build the basic mechanisms for driving small-scale chemical machines and soft robots.” In the future, Balazs will investigate how the relative spatial organization of multiple gears can lead to greater functionality and potentially designing a system that appears to act as if it were making decisions.“The more remote a machine is from human control, the more you need the machine itself to provide control in order to complete a given task,” Balazs said. “The chemo-mechanical nature of our devices allows that to happen without any external power source.”These self-morphing gears are the latest evolution of chemo-mechanical processes developed by Balazs, Laskar, and Shklyaev. Other advances include creating crab-like sheets that mimic feed, flight, and fight responses; and sheets resembling a “flying carpet” that wrap, flap, and creep. ### 1M.J.T. Lewis, Gearing in the ancient world, Endeavour, Volume 17, Issue 3, 1993, Pages 110-115, ISSN 0160-9327.AcknowledgementsThis work was supported by the Department of Energy under grant number DE-FG02-90ER45438 and in part by the University of Pittsburgh Center for Research Computing through the resources provided. ### Animation from simulation demonstrating the dynamics of a CAT-coated flexible sheet in H2O2 solution. CAT immobilized on the sheet decomposes H2O2 in the host solution to lighter products (water and oxygen), thereby producing spontaneous fluid flows. These fluid flows at the bottom of the fluidic domain drive the 2D flexible sheet to pop up at the center (lighter than the edge nodes), forming an ideal 3D structure (see side view), which catches the flow and rotates in the clockwise direction. ### Transmission of rotational motion from an active gear to two passive gears. In a fluidic chamber, an active gear can rotate multiple passive gears, which are placed to break the symmetry of the flow field.

Dec
18
2020

Modeling the Specifics of Influenza Response

Chemical & Petroleum

PITTSBURGH (Dec. 18, 2020) — The human body’s immune system has a number of tools it uses to eliminate threats—like viruses—from the body. The problem is that sometimes, the body doesn’t know when to stop, damaging healthy tissue in the process. “In respiratory infection, the immune response can be the hero and the villain,” said University of Pittsburgh researcher Jason Shoemaker. “A reasonable immune response should control the infection while protecting our body, but aggressive immune responses can often lead to increased tissue damage or even death during infection.” Shoemaker’s research uses agent-based and mathematical modeling to learn how viral lung infections behave by mapping the body’s immune response. Recently he received $900,000 in funding from National Institute of Allergy and Infectious Diseases (NIAID) for two projects that look specifically at sex- and age-specific immune responses to severe influenza. [Related: Read more about Shoemaker’s research https://www.engineering.pitt.edu/News/2020/Shoemaker-Agent-based/] In one project, Shoemaker will investigate why women often experience a more severe infection from the flu. The researchers will train mathematical models to quantify the immune responses of male and female mice to the H1N1 virus and the avian influenza virus, including major cytokines and immune cells that are involved in clearing respiratory infections. The resulting model will be the first to quantify the impact of sex hormones on lung immune regulation in females. Shoemaker is the primary investigator on the project, titled “Sex-Specific Immune Responses to Severe Influenza Virus Infection,” which received $450,000. Pneumonia is a leading cause of death in children. The second project will address the clinical need for biomarkers and models to predict the severity of influenza pneumonia in children, which will inform patient treatment. The work will be led by John Alcorn, associate professor in the Department of Pediatrics at Pitt, with Shoemaker as co-PI. The project, titled “Mathematical Modeling of Influenza Severity in Outbred Mice,” received $450,000 to define the “molecular fingerprint” of severe influenza pneumonia in juveniles using mouse models.
Maggie Pavlick

Upcoming Events


back
view more