Pitt | Swanson Engineering

The Chemical and Petroleum Engineering department at the University of Pittsburgh Swanson School of Engineering was established in 1910, making it the first department for petroleum engineering in the world. Today, our department has over 40 expert faculty (tenure/tenure-stream/joint/adjunct), a host of dedicated staff, more than 20 state-of-the-art laboratories and learning centers, and education programs that enrich with strong fundamentals and hands-on experience.

Chemical engineering is concerned with processes in which matter and energy undergo change. The range of concerns is so broad that the chemical engineering graduate is prepared for a variety of interesting and challenging employment opportunities.

Chemical engineers with strong background in sciences are found in management, design, operations, and research. Chemical engineers are employed in almost all industries, including food, polymers, chemicals, pharmaceutical, petroleum, medical, materials, and electronics. Since solutions to energy, environmental, and food problems must surely involve chemical changes, there will be continued demands for chemical engineers in the future.

Read our latest newsletter below



Oct
9
2019

Manufacturing in Microgravity

Bioengineering, Chemical & Petroleum, MEMS

PITTSBURGH (October 9, 2019) … Magnesium and magnesium alloys have the potential to become a revolutionary material for a variety of industries because of their lightweight structure and ability to quickly biodegrade in water or inside the human body. Researchers, however, are still struggling to process this very reactive metal to eliminate defects that accelerate corrosion. Prashant N. Kumta, the Edward R. Weidlein Chair Professor of Bioengineering at the University of Pittsburgh, believes that a microgravity environment may positively affect the solidification mechanisms of these alloys. He received grant funding from the International Space Station (ISS) U.S. National Laboratory to examine microgravity’s influence on his lab’s novel patented magnesium alloys. The team is partnering with Tec-Masters, Inc., the commercial hardware facility partner that operates the high-temperature SUBSA furnace aboard the ISS National Lab. Once in the microgravity environment of the space station, the alloy composition will be melted in the SUBSA furnace, and then solidified for further analysis. This is the first selected project in the new Biomedical Research Alliance - a multi-year collaboration between the ISS U.S. National Laboratory and the McGowan Institute for Regenerative Medicine to push the limits of biomedical research and development aboard the orbiting laboratory. “The alloy’s improved mechanical properties, ability to store charge, and lightweight structure will make it an attractive material for aerospace, energy storage, and automotive applications,” said Kumta. He believes that this research will play a major role in the economical manufacturing of magnesium alloys, particularly in additive manufacturing and customized 3D printing of magnesium structures. “Magnesium and magnesium alloys are extremely light, with a density similar to natural bone,” explained Kumta. “They are two-fold lighter than titanium alloys and five-fold lighter than stainless steel and cobalt-chrome alloys – all of which are materials typically used in today’s implants and frameworks. Thus, the development of these materials could open new International Space Station applications as a lightweight structural framework material.” Because of their weight and earth abundance, the alloys may also prove to be beneficial for climate change and energy storage. “Fixtures or accessories in the aerospace industry - such as seats and lighting - that are made from magnesium alloys will be lighter which will consequently reduce fuel consumption,” said Kumta. “These benefits will help reduce costs and decrease greenhouse gas emissions – an advantage that can be applied to the automotive industry which accounts for a large amount of emissions in the United States. The material could also be used as a rechargeable battery similar to lithium-ion batteries.” The magnesium alloys developed by Kumta’s team may also serve as a cheaper and improved bioresorbable material for implanted medical devices. This type of material, which can be broken down and absorbed by the body, has a variety of applications in regenerative medicine and tissue engineering, such as implanted scaffolds that help guide the growth of new tissue. “Despite expensive post-processing steps to minimize defects, magnesium alloys processed on earth react in a physiological fluid environment and form large amounts of hydrogen gas, resulting in gas pockets that must be aspirated by a syringe,” said Kumta. “We believe that processing the material in microgravity will considerably minimize or perhaps even eliminate melting and casting defects. As a result, the alloys will likely exhibit improved corrosion resistance, resulting in soluble hydrogen and salt products with better bioresorption response when implanted as scaffolds. Further, expensive post-processing will likely be eliminated, thereby reducing costs by almost 50 percent.” Kumta, who holds secondary appointments in chemical and petroleum engineering, mechanical engineering and materials science, the McGowan Institute of Regenerative Medicine, and oral biology, will work with a team of researchers from his laboratory in the Swanson School of Engineering, including Bioengineering Research Assistant Professors Abhijit Roy, Moni Kanchan Datta, and Oleg Velikokhatnyi. The research team hopes that this work will lead to the processing of better quality magnesium alloys, which will be free of many of the defects that form in terrestrially processed alloys, ultimately enabling improved functionality on Earth with significantly reduced processing steps and costs. “This work offers a tremendous opportunity for advancing the science and technology of microgravity metal casting, widening the translational potential of the versatile magnesium-based systems for biomedical, energy, and aerospace applications,” said Kumta. “Magnesium has not yet been studied in space so this project gives us the chance to explore a new frontier in scalable manufacturing of high quality magnesium and magnesium alloys in space.” ###

Sep
25
2019

Converging on a Global Waste Solution

Chemical & Petroleum, Civil & Environmental

PITTSBURGH (September 25, 2019) … In less than a generation, the plastic bottle has evolved from inexpensive convenience to scourge. What once was an accessory on the fashion runway has polluted the earth’s oceans, while plastic microparticles have been found in many living organisms. Recycling efforts have attempted to curb plastic overuse and misuse, but in the U.S. alone only 30 percent of plastic is recycled, while globally almost 20,000 plastic bottles are produced every second.1 And plastic is only one of the many types of waste – from construction materials to electronics and paper – that industries and government are attempting to reroute from landfills. However, recycling is only part of the solution to control, let alone mitigate, the proliferation of waste. A five-university team, led by the University of Pittsburgh’s Swanson School of Engineering and the Mascaro Center for Sustainable Innovation, will utilize convergence research to address this complex challenge. Their proposal, Convergence Around the Circular Economy, received a two-year, $1.3 million award from the National Science Foundation’s new Growing Convergence Research program. The award has the potential to be extended to five years and $3.6 million. “Convergence research is one of NSF’s “Big Ideas” to bring together a diverse team that can break apart silos and develop novel research paradigms to solve pressing societal challenges,” explained Melissa Bilec, deputy director of the Mascaro Center, associate professor of civil and environmental engineering, and Roberta A. Luxbacher Faculty Fellow at Pitt, and the award’s principal investigator. “I am personally interested in high-impact research that addresses significant societal challenges. Circular economy offers promising solution as it aims to cycle products and materials back into production through creating new products or benign degradation. “With our project, we are aiming to advance the much needed fundamental science behind circular economy solutions by not only designing products with an eye towards circularity, but also in  alignment with sustainability goals.” Within the Swanson School and the Mascaro Center, Dr. Bilec, an expert in high-performance buildings and environmental impacts, assembled experts in polymers and green molecular design, life cycle assessment, industrial ecology, blockchain, and complexity leadership theory. External members were recruited from Rochester Institute of Technology, the University of Illinois at Chicago and University of Illinois Urbana-Champaign, and the University of Maine. “For centuries, the global consumption model for any product has been linear – “take, make, waste.” As the global population continues to grow, this places enormous pressures on all parts of the supply chain and ultimately results in a negative environmental impact, as we’ve seen with plastic bottles and containers,” explained Eric J. Beckman, Co-Director of the Mascaro Center and Distinguished Service Professor of Chemical and Petroleum Engineering at Pitt. “This, however, is a difficult philosophy for the chemical industry, whose production processes and inside-the-box thinking have remained virtually unchanged for more than 70 years,” Dr. Beckman added. “What has changed – and what industry wasn’t prepared for – is that consumers are demanding a fix.” Circling the Research Wagons Dr. Bilec’s convergence research team includes engineers, economists, anthropologists, and environmental assessment experts, each of whom will leverage their own expertise toward addressing this global waste crisis through circular economy fundamentals. Rather than focusing solely on creating a better plastic or improving recycling methods, the researchers will seek to develop novel business models, engagement approaches, policy options, and innovative technical and science-based advances that potentially could impact the entire lifecycle of plastics and construction materials. “The problem with simply reusing or recycling stuff is knowing what’s in it, where it came from, where it is now. This is the reason why some plastic packaging, although made with components that individually are recyclable, has to be thrown away because there is no way to separate these parts,” noted Vikas Khanna, associate professor of civil and environmental engineering and Wellington C. Carl Faculty Fellow at Pitt. “To determine a product’s life cycle, there is a tremendous amount of data that needs to be collected, sourced and distributed to even begin finding sustainable solutions.” One approach to tracking that data is utilizing blockchain, which is making inroads in healthcare, supply chains, law and more, beyond its more well-known use in cryptocurrencies. “Blockchain is ideal for establishing provenance and can assist with the development and reuse of materials,” explained Christopher Wilmer, assistant professor of chemical and petroleum engineering and William Kepler Whiteford Faculty Fellow at Pitt and founder of Ledger, the first peer-reviewed scholarly journal dedicated to blockchain and cryptocurrency. “Blockchain provides a secure, immutable series of data that can establish a firm foundation for life-cycle assessment.” To leverage additional expertise toward the challenge, Dr. Bilec recruited researchers from four other universities: Callie Babbitt, Associate Professor, Golisano Institute for Sustainability, Rochester Institute of Technology Don Fullerton, Professor, Finance, Economics & Institute of Government and Public Affairs, Gies College of Business, University of Illinois Urbana-Champaign Cindy Isenhour, Associate Professor, Anthropology and Climate Change, University of Maine Thomas L. Theis, Director, Institute for Environmental Science & Policy, University of Illinois at Chicago And to determine whether their work is indeed converging toward a solution, Gemma Jiang, director of the Organizational Innovation Lab at Pitt, will monitor the researchers’ organizational functions, structures and processes to better review progress and implement any course corrections. “Solving the global waste problem demands a sea-change of thought and accepted practices across so many disciplines and industries, which is why this NSF funding is critical,” Dr. Bilec said. “This will require potentially disruptive change, but with a convergence approach we can create a more equitable and sustainable set of solutions that benefit the planet as a whole.” ### Eindhoven, The Netherlands, May 23rd 2019. Re-imagining the shipping container, here housing an architectural firm and store featuring upcycled goods from used materials. (Lea Rae/Shutterstock) 1Sources: Euromonitor International, The Guardian.

Sep
23
2019

Cracking the Ethylene Code

Chemical & Petroleum

PITTSBURGH (Sept. 23, 2019) — From soda bottles to polyester clothing, ethylene is part of many products we use every day. In part to meet demand, the Shell Oil Company is building an ethane cracker plant in Beaver County, Pa., specifically to produce ethylene molecules from the abundant ethane found in natural gas. However, the chemical reaction used to convert ethane into valuable ethylene is incomplete, so such plants produce an impure mixture of ethylene and ethane. Separating pure ethylene from ethane is a difficult and costly process, but one that new research from the University of Pittsburgh’s Swanson School of Engineering is poised to streamline. The technique investigated in two new papers, published in the Journal of the American Chemical Association and Organometallics, would avoid liquefaction and distillation by designing a material that only binds ethylene molecules, thus separating them from ethane. Ethylene is an olefin--a molecule with an unsaturated bond (like unsaturated fats). Current methods of separating ethylene from ethane involve cooling the mixture to very low temperatures, liquefying it, and feeding it into a large distillation column, which is an energy-intensive and costly process. Developed by a team led by Professors Karl Johnson, PhD, and Götz Veser, PhD, from Chemical and Petroleum Engineering, and Professor Nathaniel Rosi, PhD, from the Department of Chemistry, this new process would potentially save a great deal of energy, reducing carbon emissions and costs at the same time. The heart of this new separation method is isolated copper atoms that olefins like ethylene can bond to strongly. Since copper atoms naturally want to clump together, which destroys their ability to bond with olefins, the Pittsburgh researchers used metal-organic frameworks (MOFs) to effectively isolate single atoms of copper in the right location to produce high-grade ethylene at least 99.999 percent pure. “The uniqueness of this material is that the isolated copper atoms are in the right oxidation state and the right geometry within the metal organic framework to provide very high selectivity—higher than other adsorption methods—and it can easily be scaled up,” says Johnson, the W.K. Whiteford Professor in the Department of Chemical and Petroleum Engineering and Associate Director of the Center for Research Computing. “MOFs are a practical alternative to an inefficient and costly process.” “Designing Open Metal Sites in Metal-Organic Frameworks for Paraffin/Olefin Separations,” (DOI:  10.1021/jacs.9b06582) was published in the Journal of the American Chemical Society and was co-authored by Mona H. Mohamed, PhD, Austin Gamble Jarvi, Sunil Saxena, PhD, and Nathaniel Rosi, PhD, from Pitt’s Chemistry Department; and Yahui Yang, Lin Li, PhD, Sen Zhang, Johnathan Ruffley, Götz Veser, PhD, Karl Johnson, PhD, from the Department of Chemical and Petroleum Engineering. Rosi holds a secondary appointment in the Chemical and Petroleum Engineering. “Fundamental Insights into the Reactivity and Utilization of Open Metal Sites in Cu(I)-MFU-4/,” (DOI:  10.1021/acs.organomet.9b00351)  was published in Organometallics and was co-authored by Lin Li, PhD, Yahui Yang, Mona H. Mohamed, PhD, Sen Zhang, Götz Veser, PhD, Nathaniel Rosi, PhD, and Karl Johnson, PhD.
Maggie Pavlick
Sep
17
2019

Modeling a Model Nanoparticle

Chemical & Petroleum

PITTSBURGH (Sept. 17, 2019) — Metal nanoparticles have a wide range of applications, from medicine to catalysis, from energy to the environment. But the fundamentals of adsorption—the process allowing molecules to bind as a layer to a solid surface—in relation to the nanoparticle’s characteristics were yet to be discovered. New research from the University of Pittsburgh Swanson School of Engineering introduces the first universal adsorption model that accounts for detailed nanoparticle structural characteristics, metal composition and different adsorbates, making it possible to not only predict adsorption behavior on any metal nanoparticles but screen their stability, as well. The research combines computational chemistry modeling with machine learning to fit a large number of data and accurately predict adsorption trends on nanoparticles that have not previously been seen. By connecting adsorption with the stability of nanoparticles, nanoparticles can now be optimized in terms of their synthetic accessibility and application property behavior. This improvement will significantly accelerate nanomaterials design and avoid trial and error experimentation in the lab. “This model has the potential to impact diverse areas of nanotechnology with applications in catalysis, sensors, separations and even drug delivery,” says Giannis (Yanni) Mpourmpakis, the Swanson School’s Bicentennial Alumni Faculty Fellow and associate professor of chemical and petroleum engineering, whose CANELa lab conducted the research.  “Our lab, as well as other groups, have performed prior computational studies that describe adsorption on metals, but this is the first universal model that accounts for nanoparticle size, shape, metal composition and type of adsorbate. It’s also the first model that directly connects an application property, such as adsorption and catalysis, with the stability of the nanoparticles.” The paper, “Unfolding Adsorption on Metal Nanoparticles: Connecting Stability with Catalysis” was published in Science Advances (DOI: 10.1126/sciadv.aax5101) on Sept. 13, 2019. It was authored by James Dean, Michael G. Taylor, PhD, and Giannis Mpourmpakis, PhD. The research was funded by a Designing Engineering and Material Systems grant from the National Science Foundation.
Maggie Pavlick
Sep
9
2019

Makerspaces and Mindsets

Bioengineering, Chemical & Petroleum, Civil & Environmental, Electrical & Computer, MEMS, Student Profiles

PITTSBURGH (Sept. 9, 2019) — As with many creative projects, this one started with a doodle. Students at this year’s Makerspace Bootcamp at the University of Pittsburgh’s Swanson School of Engineering learned that to create a finished product, (in this case, a laser-cut lampshade), you must first translate the idea in your head onto paper. The 31 rising sophomore engineering students were asked to quickly sketch out a lampshade design, and then another, and another. By the end of the day, they would turn one of the sketches into a working lamp. “The project goes from physical, to digital, and back to physical. We walk through the design process, using software to create a digital model from the sketch, cutting it with the laser cutter, and assembling the lamp,” says David Sanchez, PhD, assistant professor of civil and environmental engineering at the Swanson School. “The workshop helps students overcome two hurdles—one, that they don’t know that the makerspace is available to everyone, and two that they feel they need to be Tony Stark in order to create something.” The students used the Pitt Makerspace led by Brandon Barber, BioE Design, Innovation and Outreach Coordinator, to complete their lamp. The Makerspace, located in Benedum Hall, is open to students of all majors and has a wide range of equipment to design and fabricate. Current Makerspace students serve as mentors and helped the boot camp participants in the same way they guide all newcomers. “The Pitt Makerspaces provide hands-on experiences for students, with resources and support to make an idea a reality,” says Barber. “We want students to feel welcome to come in, explore, and collaborate, and the boot camp helps introduce them to a new way of thinking.” The annual boot camp began in 2013 as an entrepreneurship-focused event sponsored by the Engineering Education Research Center, but under the direction of Sanchez with the support of William (Buddy) Clark, PhD, professor of mechanical engineering and materials science, and Director of the Innovation and Entrepreneurship program. Since then it has shifted its focus to the Makerspace and Sanchez and Barber now plan for it to be even more hands-on and open to more students. While the first day of the workshop focused on using the Pitt Makerspace, the final day centered on building the mindset of a creator. Sanchez presented the students with different design challenges, such as imagining how to grow a company that sells one particular product successfully, like an oven cleaner. While most pitched the idea of making “a better oven cleaner,” he helped them to see that diving deeper into the customer’s experience would yield opportunities to reinvent it with concepts like better self-cleaning ovens. “Critical thinking and empathy are important parts of the design process. Shifting your focus beyond what products do to what customers experience is essential to good design,” says Sanchez. “Our goal for the boot camp is to cultivate this approach to design and making that inspires all our students to incorporate it into their experience here at the Swanson School.”
Maggie Pavlick

Upcoming Events


back
view more