Pitt | Swanson Engineering

IEgradOpenHouse11.16

If interested, please email gradie@pitt.edu for the zoom link!

   

Welcome

Industrial engineering (IE) is about choices - it is the engineering discipline that offers the most wide-ranging array of opportunities in terms of employment, and it is distinguished by its flexibility. While other engineering disciplines tend to apply skills to very specific areas, Industrial Engineers may be found working everywhere: from traditional manufacturing companies to airlines, from distribution companies to financial institutions, from major medical establishments to consulting companies, from high-tech corporations to companies in the food industry. The BS in industrial engineering program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org). To learn more about Industrial Engineering’s Undergraduate Program ABET Accreditation, click here.  Our department is the proud home of Pitt's Center for Industry Studies, which supports multidisciplinary research that links scholars to some of the most important and challenging problems faced by modern industry.

A statement co-signed by department chair, Bopaya Bidanda, on diversity, equity, and conclusion.

Click here for the Fall (2211) term undergraduate schedule.

Click here for the Fall (2211) term graduate schedule.

Click here for the Spring (2214) term undergraduate schedule.

Click here for the Spring (2214) term graduate schedule.

Join With Us In Celebrating Our 2020 Graduating Class! 

(Video will appear at 9:30 am on Sunday, April 26. Refresh browser at that time.)


Nov
19
2020

University of Pittsburgh Joins New DOE Cybersecurity Manufacturing Innovation Institute

Electrical & Computer, Industrial, MEMS, Nuclear

SAN ANTONIO, TX (November 19, 2020) ... The University of Texas at San Antonio (UTSA) today formally launched the Cybersecurity Manufacturing Innovation Institute (CyManII), a $111 million public-private partnership. Led by UTSA, the university will enter into a five-year cooperative agreement with the U.S. Department of Energy (DOE) to lead a consortium of 59 proposed member institutions in introducing a cybersecure energy-ROI that drives American manufacturers and supply chains to further adopt secure, energy-efficient approaches, ultimately securing and sustaining the nation’s leadership in global manufacturing competitiveness.U.S. manufacturers are one of the top targets for cyber criminals and nation-state adversaries, impacting the production of energy technologies such as electric vehicles, solar panels and wind turbines. Integration across the supply chain network and an increased use of automation applied in manufacturing processes can make industrial infrastructures vulnerable to cyber-attacks. To protect American manufacturing jobs and workers, CyManII will transform U.S. advanced manufacturing and make manufacturers more energy efficient, resilient and globally competitive against our nation’s adversaries.“The University of Pittsburgh is proud to be among the inaugural member institutions of this national effort to develop cyber security and energy research to benefit U.S. manufacturing expertise,” noted Rob A. Rutenbar,Senior Vice Chancellor for Research at Pitt. “Both our Swanson School of Engineering and School of Computing and Information at the forefront of innovations in advanced manufacturing, cyber infrastructure and security, sustainable energy, materials science and supply chain management. Our faculty are looking forward to participating in this groundbreaking institute.”“The exploitation of advanced materials and computing can provide us with a more holistic approach to secure the nation’s manufacturing infrastructure, from communication networks and assembly lines to intricate computer code and distribution systems,” added Daniel Cole, Associate Professor of Mechanical Engineering and Materials Science and co-director of the Swanson School’s Hacking for Defense program. “Just as our personal computers and cell phones are vulnerable to cyber-attacks, so too is our complex manufacturing industry. But thanks to this national effort through CyManII, we will not only be able to develop defenses but also create more sustainable and energy efficient technologies for industry.”“I am excited for the potential collaborations between our faculty and the innovations they will develop,” said David Vorp, Associate Dean for Research at the Swanson School. “We already have a healthy collaboration with faculty in the School of Computing and Information, and sustainability informs our research, academics, and operations. CyManII presents a new opportunity for us to engage in transformative, trans-disciplinary research.”As part of its national strategy, CyManII will focus on three high priority areas where collaborative research and development can help U.S. manufacturers: securing automation, securing the supply chain network, and building a national program for education and workforce development. “As U.S. manufacturers increasingly deploy automation tools in their daily work, those technologies must be embedded with powerful cybersecurity protections,” said Howard Grimes, CyManII Chief Executive Officer and UTSA Associate Vice President and Associate Vice Provost for Institutional Initiatives. “UTSA has assembled a team of best-in-class national laboratories, industry, nonprofit and academic organizations to cybersecure the U.S. manufacturing enterprise. Together, we will share the mission to protect the nation’s supply chain, preserve its critical infrastructure and boost its economy.”CyManII’s research objectives will focus on understanding the evolving cybersecurity threats to greater energy efficiency in manufacturing industries, developing new cybersecurity technologies and methods, and sharing information and knowledge with the broader community of U.S. manufacturers.CyManII aims to revolutionize cybersecurity in manufacturing by designing and building a secure manufacturing architecture that is pervasive, unobtrusive and enables energy efficiency. Grimes says this industry-driven approach is essential, allowing manufacturers of all sizes to invest in cybersecurity and achieve an energy ROI rather than continually spending money on cyber patches.These efforts will result in a suite of methods, standards and tools rooted in the concept that everything in the manufacturing supply chain has a unique authentic identity. These solutions will address the comprehensive landscape of complex vulnerabilities and be economically implemented in a wide array of machines and environments.“CyManII leverages the unique research capabilities of the Idaho, Oak Ridge and Sandia National Laboratories as well as critical expertise across our partner cyber manufacturing ecosystem,” said UTSA President Taylor Eighmy. “UTSA is proud and honored to partner with the DOE to advance cybersecurity in energy-efficient manufacturing for the nation.”CyManII has 59 proposed members including three Department of Energy National Laboratories (Idaho National Laboratory, Oak Ridge National Laboratory, and Sandia National Laboratories), four Manufacturing Innovation Institutes, 24 powerhouse universities, 18 industry leaders, and 10 nonprofits. This national network of members will drive impact across the nation and solve the biggest challenges facing cybersecurity in the U.S manufacturing industry.CyManII is funded by the Office of Energy Efficiency and Renewable Energy’s Advanced Manufacturing Office (AMO) and co-managed with the Office of Cybersecurity, Energy Security, and Emergency Response (CESER). ------ Learn more about the Cybersecurity Manufacturing Innovation Institute.
Author: EmilyGuajardo, CyManII Communications Manager
Nov
9
2020

Swanson School Stent Technologies Clinch Wells Competition Awards

Bioengineering, Industrial, Student Profiles

PITTSBURGH (Nov. 9, 2020) … Two Swanson School of Engineering projects received awards at the University of Pittsburgh Innovation Institute’s Wells Healthcare Competition, which provides funding for students who are developing innovations related to the health care field. Moataz Elsisy, a PhD student in the Department of Industrial Engineering, received an award for the Organ Perfusion Stent (OPS), an innovative endovascular device that seeks to increase the availability of healthy donor organs for transplant surgery. Elsisy works in the Medical Device Manufacturing Laboratory led by Youngjae Chun, associate professor of Industrial Engineering at Pitt. The lab’s unique device targets patients who die from heart failure. “These donors may still have healthy organs in the torso, such as the liver, kidney or pancreas,” Elsisy explained, “but the effects of heart disease may affect blood flow and damage these potentially life-saving organs.” The OPS aims to minimize cardiac burden by separating aortic blood flow into two different chambers -- one for cardiac flow and another for oxygenated blood flow from an extracorporeal membrane oxygenation (ECMO) system. The device would significantly increase the number of available organs from the cardiac death donors, eliminating any potential organ blood shortage complications. “Our device increases the number of available healthy organs to those who are in desperate need for transplantation,” said Elsisy. “The device will save health care costs up to $1.2 million per donor. A single donor can take two patients off dialysis, one patient off insulin, and one patient out of the hospital for liver failure.” He adds that the device can also enhance the quality of life for transplant receivers, as they will not require daily insulin injections or dialysis several times a week. The second award went to Sneha Jeevan, a bioengineering senior, who works in the Soft Tissue Biomechanics Laboratory led by Jonathan Vande Geest, professor of bioengineering at Pitt. Their device hopes to address complications related to the treatment of peripheral artery disease. “Peripheral artery disease is a common circulatory problem in which narrowed arteries reduce blood flow to your limbs,” explained Jeevan. “It has become an increasingly serious public health issue, with 236 million people ages 40 and older world-wide being affected. It also has a large monetary cost, with insurance companies and private payers paying $21 billion annually to cover costs, including medication, physical therapy, and device reintervention.” While stents can be used to treat the disease, these devices are not compatible with small arteries and often renarrow, particularly across joints, after they are implanted. The winning project, Biocarpet, is a flexible, drug-eluting, and biodegradable endovascular device that they hope will provide a solution to the current limitations in stent technology. The Biocarpet combines a blend of biocompatible polymers and special thermoforming techniques that allow it to conform to any complex vascular anatomy. This advantage will reduce device kinking and restenosis, both of which occur frequently when treating PAD with current stent technologies. “The Biocarpet’s biopolymer conformability and improved delivery method act as key differentiating factors, which will allow for reduced reintervention rates and improved patient outcomes for PAD,” Jeevan added. “Once the device is established as an effective treatment for PAD, it can potentially be used in other cardiovascular diseases, changing the way that hospitals treat arterial disease and giving patients the best possible treatment while minimizing costs.” # # #

Nov
2
2020

Pitt INFORMS Chapter Clinches Another Annual Student Chapter Award

Industrial, Student Profiles

PITTSBURGH (Nov. 2, 2020) … For the third year in a row, the University of Pittsburgh’s Swanson School of Engineering was selected for a Student Chapter Annual Award from the Institute for Operations Research and Management Sciences (INFORMS). The award recognizes achievements of student chapters and will be presented at a virtual ceremony in November. The group’s 2020 award is at the Cum laude level, and it is their fourth award since 2015. The Pitt INFORMS Student Chapter provides networking opportunities and social events for students who are interested in operations research and management science. The group also serves as a liaison between Pitt and the national INFORMS organization. “The INFORMS student chapter serves as the de facto graduate student organization in our department,” said Jayant Rajgopal, INFORMS member, advisor and professor in the Department of Industrial Engineering. “The chapter is very active and organizes a number of academic events such as software tutorials, seminars and mock PhD qualifying exams over the course of the year. “They also organize social events, and in the past, they have reached out to other local groups in the operations research community, such as graduate students at Pitt’s Katz School of Business and Carnegie Mellon University,” he continued. “The chapter is consistently recognized at the national level for their contributions.” INFORMS is the world’s largest professional association dedicated to best practices and advances in operations research, management science, and analytics. Pitt’s is one of dozens of student chapters across the U.S. and internationally. “We are very proud to follow-up on the legacy of the previous Pitt INFORMS Student Chapter, and this award reflects all the effort they made to keep high standards,” said Tomás Lagos, the current chapter president. “Sadly, the current safety guidelines do not allow us to fulfill the chapter’s mission, as face-to-face activities are no longer possible. Currently, we are adjusting our plans for revitalizing the chapter next semester in order to keep up the great work done so far.” # # #

Oct
21
2020

Pitt Engineering Alumnus Dedicates Major Gift Toward Undergraduate Tuition Support

All SSoE News, Bioengineering, Chemical & Petroleum, Civil & Environmental, Electrical & Computer, Industrial, MEMS, Student Profiles, Office of Development & Alumni Affairs, Nuclear, Diversity, Investing Now

PITTSBURGH (October 21, 2020) …  An eight-figure donation from an anonymous graduate of the Swanson School of Engineering and spouse to the University of Pittsburgh Swanson School of Engineering in their estate planning to provide financial aid to undergraduate students who are enrolled in the Pitt EXCEL Program. Announced today by Pitt Chancellor Patrick Gallagher and US Steel Dean of Engineering James R. Martin II, the donors' bequest will provide tuition support for underprivileged or underrepresented engineering students who are residents of the United States of America and in need of financial aid. “I am extremely grateful for this gift, which supports the University of Pittsburgh’s efforts to tackle one of society’s greatest challenges—the inequity of opportunity,” Gallagher said. “Put into action, this commitment will help students from underrepresented groups access a world-class Pitt education and—in doing so—help elevate the entire field of engineering.” “Our dedication as engineers is to create new knowledge that benefits the human condition, and that includes educating the next generation of engineers. Our students’ success informs our mission, and I am honored and humbled that our donors are vested in helping to expand the diversity of engineering students at Pitt,” Martin noted. “Often the most successful engineers are those who have the greatest need or who lack access, and support such as this is critical to expanding our outreach and strengthening the role of engineers in society.” A Gift to Prepare the Workforce of the Future Martin noted that the gift is timely because it was made shortly after Chancellor Gallagher’s call this past summer to create a more diverse, equitable, and inclusive environment for all, especially for the University’s future students. The gift – and the donors’ passion for the Swanson School – show that there is untapped potential as well as significant interest in addressing unmet need for students who represent a demographic shift in the American workforce.  “By 2050, when the U.S. will have a minority-majority population, two-thirds of the American workforce will require a post-secondary education,” Martin explained. “We are already reimagining how we deliver engineering education and research, and generosity such as this will lessen the financial burden that students will face to prepare for that future workforce.” A Half-Century of IMPACT on Engineering Equity In 1969 the late Dr. Karl Lewis (1/15/1936-3/5/2019) founded the IMPACT Program at the University of Pittsburgh to encourage minority and financially and culturally disadvantaged students to enter and graduate from the field of engineering. The six-week program prepared incoming first year students through exposure to university academic life, development of study skills, academic and career counseling, and coursework to reinforce strengths or remedy weaknesses. Many Pitt alumni today still note the role that Lewis and IMPACT had on their personal and professional lives.  Under Lewis’ leadership, IMPACT sparked the creation of two award-winning initiatives within the Swanson School’s Office of Diversity: INVESTING NOW, a college preparatory program created to stimulate, support, and recognize the high academic performance of pre-college students from groups that are historically underrepresented in STEM majors. Pitt EXCEL, a comprehensive undergraduate diversity program committed to the recruitment, retention, and graduation of academically excellent engineering undergraduates, particularly individuals from groups historically underrepresented in the field. “Dr. Lewis, like so many of his generation, started a movement that grew beyond one person’s idea,” said Yvette Wisher, Director of Pitt EXCEL. “Anyone who talks to today’s EXCEL students can hear the passion of Dr. Lewis and see how exceptional these young people will be as engineers and individuals. They and the hundreds of students who preceded them are the reason why Pitt EXCEL is game-changer for so many.”  Since its inception, Pitt EXCEL has helped more than 1,500 students earn their engineering degrees and become leaders and change agents in their communities. Ms. Wisher says the most important concept she teaches students who are enrolled in the program is to give back however they can once they graduate—through mentorship, volunteerism, philanthropy, or advocacy.  Supporting the Change Agents of Tomorrow “Pitt EXCEL is a home - but more importantly, a family. The strong familial bonds within Pitt EXCEL are what attracted me to Swanson as a graduating high school senior, what kept me going throughout my time in undergrad and what keeps me energized to this very day as a PhD student,” explained Isaiah M. Spencer Williams, BSCE ’19 and currently a pre-doctoral student in the Swanson School’s Department of Civil and Environmental Engineering. “Pitt EXCEL is a family where iron sharpens iron and where we push each other to be the best that we can be every day. Beyond that, it is a space where you are not only holistically nurtured and supported but are also groomed to pave the way for and invest into those who are coming behind you.  “Pitt EXCEL, and by extension, Dr. Lewis' legacy and movement are the reasons why I am the leader and change agent that I am today. This generous gift will ensure a bright future for underrepresented engineering students in the Pitt EXCEL Program, and will help to continue the outstanding development of the change agents of tomorrow.”  Setting a Foundation for Community Support “Next year marks the 51st anniversary of IMPACT/EXCEL as well as the 175th year of engineering at Pitt and the 50th anniversary of Benedum Hall,” Dean Martin said. “The Swanson School of Engineering represents 28,000 alumni around the world, who in many ways are life-long students of engineering beyond the walls of Benedum, but who share pride in being Pitt Engineers. “The key to our future success is working together as a global community to find within ourselves how we can best support tomorrow’s students,” Martin concluded. “We should all celebrate this as a foundational cornerstone gift for greater engagement.” ###

Oct
16
2020

Fighting Fire with Data

Industrial

PITTSBURGH (Oct. 16, 2020) — The wildfires that consumed the west coast of the U.S. this year were a part of a larger pattern. Experts warn that climate change is increasing the severity and extent of wildfires over the past several, and their impact on communities, the environment and the economy is growing. Industrial engineer and professor Oleg Prokopyev at the University of Pittsburgh’s Swanson School of Engineering is utilizing optimization to find a solution to this problem. Prokopyev will collaborate with Lewis Ntaimo and Jianbang Gan at Texas A&M University on the project, titled “Collaborative Research: Fuel Treatment Planning Optimization for Wildfire Management.” The National Science Foundation recently awarded $550,000 for the work, with $270,000 designated for Pitt. “One strategy for mitigating forest fires is fuel treatment, which involves strategically removing some of the vegetation—the ‘fuel’ for the fire—with controlled burns, grazing or mechanical thinning,” said Prokopyev. “Our models will help predict when, where and how to best implement these methods.” Using advanced decision-making methods, such as mixed-integer optimization and simulation, the project will provide a better understanding of what types of fuel treatment options would be most effective, and when to implement them. In addition, the project will use historical data from the Texas A&M Forest Service to calibrate and validate the developed mathematical models. The project began Sept. 1, 2020 and is expected to last three years.
Maggie Pavlick

Upcoming Events


back
view more