Energy & Sustainability

It is the goal of our energy departments to increase the generation of electric power from renewable sources such as solar power.   Through our research we can increase renewable power generation,  accelerate the development and adoption of sustainable transportation technologies, and stimulate the growth of a thriving domestic clean energy manufacturing industry by reducing life-cycle energy consumption.

Heng Ban

Professor Ban's research covers topics in thermal-fluid sciences, materials and energy sciences. His recent focus has been to understand the relationship between material microstructural change and its thermal performance, particularly experimental and computational material thermophysical properties and measurement technique development.

Eric Beckman

Dr. Beckman's research group examines the use of molecular design to solve problems in green product formulation and in the design of materials for use in tissue engineering. He has published over 175 papers and has received more than 40 US patents

Mostafa Bedewy

In the NanoProduct Lab (Bedewy Research Group), we leverage precision engineering, biomimetic/bio-inspired designs, and quantitative tools to tackle fundamental research questions at the interface between nanoscience, biotechnology, and manufacturing engineering. Bridging the gap between promising proof-of-concept results (in lab-scale environment) and mass-produced products (in industry), our work aims at creating novel solutions that impact major societal challenges in areas related to energy, healthcare, and the environment.

Kevin Chen

Dr. Kevin Chen's research focuses on scalable 3D laser manufacturing from nanoscale to macroscale. Sensor fused additive manufacturing.

Markus Chmielus

The Chmielus Advanced Manufacturing & Magnetic Materials Lab (AM³, focuses its research on investigating the relationship between powder, composition, manufacturing, processing, microstructure and properties of structural and functional materials. We are employing traditional and additive manufacturing and quantitative characterization techniques at Pitt and with partners to achieve this goal from fundamental to applied research.

Minking Chyu

Utilizing advanced manufacturing technologies in developing novel materials and coating techniques for thermal protection and cooling of hot sections in aeroengine and power generation turbines. More effective thermal protection and cooling design lead to an increased cycle efficiency and less fuel consumption.

C. Isaac Garcia

Alloy design, thermomechanical processing, transformation and precipitation studies. Microstructural-Properties Optimization. Non-Destructive Testing (UT and EMAT techniques). Computer simulations and physical simulations (CAL and BA simulators).

Prashant Kumta

Work in Professor Prashant N. Kumta’s laboratory focuses on innovative synthesis, fabrication and additive manufacturing of novel materials and architectures for energy and biotechnologies. Specifically, research is directed at fundamental characterization and obtaining a scientific understanding of structure and property relationships of novel materials and platforms for batteries, fuel cells, electrocatalysts, photoelectrocatalysts, degradable scaffolds, functionalization of scaffolds for tissue regeneration, drug and protein delivery, non-viral gene delivery, as well as embryonic stem cell differentiation.

Sangyeop Lee

Dr. Sangyeop Lee as studied nano-to-microscale thermal transport using theory and simulation. Current focus is on the thermal transport during phase transition.

Paul Leu

The Laboratory for Advanced Materials at Pittsburgh (LAMP) focuses on (1) Photonics and Energy and (2) Multifunctional Surfaces.

Ravi Shankar

Shankar’s research is at the nexus of material, microstructural and mechanical design to realize systems with unprecedented functionalities. His research includes, development of nanocrystalline materials and microstructural gradients in metallic materials to endow improved manufacturability and functional properties such as biocompatibility, corrosion resistance and tribological properties. He also pioneered new classes of materials and designs that offer direct conversion of light into mechanical actuation to enable devices that can be powered and controlled remotely with photonic energy. In the additive manufacturing domain, his research on metallic materials has identified interlinkages between residual stresses, part distortion and DMLS process parameters. In polymeric systems, he is exploring frameworks for programming materials at the molecular level in macroscopic freeforms to enable new classes of morphing structures and manipulators that can be powered and controlled using otherwise unstructured ambient stimuli such as heat, light, solvents etc.

Albert To

Dr. Albert To’s expertise is in computational mechanics, topology optimization, and multiscale methods for advanced manufacturing. His current research activities include fast process modeling, process-microstructure-process relationship, support structure optimization, and cooling channel design for laser-based metal additive manufacturing.

Guofeng Wang

Dr. Guofeng Wang's research is to develop and apply Integrated Computational Materials Engineering (ICME) methods for certification of advanced manufacturing techniques.

Jorg Wiezorek

Dr. Wiezorek’s group performs physical metallurgy related research on the characterization, design and engineering of microstructures to understand, optimize and enhance the properties of primarily metal based material, such as Al-, Mg-, Ti-, Ni-, Fe-alloys and intermetallics, for both structural and functional applications. The research utilizes expert application of electron-, ion- and photon-beam based analyses, such as scanning and transmission electron microscopy as well as X-ray diffraction methods, and processing by plastic deformation, thermo-mechanical and continuous wave and pulsed laser-based processing of bulk and thin film materials to elucidate processing-microstructure-property relationships, resulting in tailoring of the processing paths for enhanced performance in the envisaged application environments.

Wei Xiong

Dr. Wei Xiong leads the PMMD (Physical Metallurgy and Materials Design) Laboratory with the research focus on bridging fundamental materials science and materials engineering applications. The lab studies the relation of process-structure-property using high-throughput experiments and computation, which further support new materials design and processing optimization.