PhD, Electrical and Computer Engineering, University of Minnesota, 2012 - 2016
MSc, Electrical and Computer Engineering, University of Minnesota, 2012 - 2015
BS, Physics, Bethel University, 2007 - 2011
Kari, S.R., Pintus, P., Bowers, J.E., Robbins, M., & Youngblood, N. (2025). Enabling High-Bandwidth Coherent Modulation Through Scalable Lithium Niobate Resonant Devices.
Kari, S.R., Tamura, M., Guo, Z., Huang, Y.S., Sun, H., Lian, C., Nobile, N., Erickson, J., Moridsadat, M., Ocampo, C.A.R.L.O.S.A.R., Shastri, B.J., & Youngblood, N. (2025). High-speed multifunctional photonic memory on a foundry-processed photonic platform. OPTICA, 12(1), 31-38.Optica Publishing Group. doi: 10.1364/OPTICA.536866.
Pintus, P., Dumont, M., Shah, V., Murai, T., Shoji, Y., Huang, D., Moody, G., Bowers, J.E., & Youngblood, N. (2025). Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. NATURE PHOTONICS, 19(1), 54-62.Springer Nature. doi: 10.1038/s41566-024-01549-1.
Shah, V., & Youngblood, N. (2025). Leveraging Continuously Differentiable Activation for Learning in Analog and Quantized Noisy Environments. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 31(3), 1-9.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2025.3534636.
Sun, H., Lian, C., Vásquez-Aza, F., Rahimi Kari, S., Huang, Y.S., Restelli, A., Vitale, S.A., Takeuchi, I., Hu, J., Youngblood, N., Pavlidis, G., & Ríos Ocampo, C.A. (2025). Microheater hotspot engineering for spatially resolved and repeatable multi-level switching in foundry-processed phase change silicon photonics. Nat Commun, 16(1), 4291.Springer Nature. doi: 10.1038/s41467-025-59399-6.
Gholipour, B., Youngblood, N., Wang, Q., Wu, P.C., Barclay, P., & Ou, J.Y. (2024). Reconfigurable photonic platforms: feature issue introduction. OPTICAL MATERIALS EXPRESS, 14(1), 236-239.Optica Publishing Group. doi: 10.1364/OME.510620.
Kari, S.R., Nobile, N.A., Pantin, D., Shah, V., & Youngblood, N. (2024). Realization of an integrated coherent photonic platform for scalable matrix operations. OPTICA, 11(4), 542-551.Optica Publishing Group. doi: 10.1364/OPTICA.507525.
Kari, S.R., Tamura, M., Guo, Z., Huang, Y.S., Sun, H., Lian, C., Nobile, N., Erickson, J., Moridsadat, M., Ocampo, C.A.R., Shastri, B.J., & Youngblood, N. (2024). High-Speed Multifunctional Photonic Memory on a Foundry-Processed Photonic Platform. doi: 10.48550/arxiv.2409.13954.
Shah, V., & Youngblood, N. (2024). Leveraging Continuously Differentiable Activation Functions for Learning in Quantized Noisy Environments.
Sun, H., Lian, C., Vásquez-Aza, F., Kari, S.R., Huang, Y.S., Restelli, A., Vitale, S.A., Takeuchi, I., Hu, J., Youngblood, N., Pavlidis, G., & Ocampo, C.A.R. (2024). Microheater hotspot engineering for repeatable multi-level switching in foundry-processed phase change silicon photonics. In arXiv. doi: 10.48550/arxiv.2407.00059.
Upcraft, D., Vaz, D., Youngblood, N., & Oh, S.H. (2024). Efficient TE-polarized mode coupling between a plasmonic tunnel junction and a photonic waveguide. OPTICS EXPRESS, 32(26), 47574-47588.Optica Publishing Group. doi: 10.1364/OE.543072.
Youngblood, N., Wang, Q., Simpson, R.E., & Hu, J. (2024). Special Section Guest Editorial: Phase-Change Reconfigurable Photonics. JOURNAL OF OPTICAL MICROSYSTEMS, 4(3), 031201.SPIE, the international society for optics and photonics. doi: 10.1117/1.JOM.4.3.031201.
Zheng, M., Chu, C., Lou, Q., Youngblood, N., Li, M., Moazeni, S., & Jiang, L. (2024). OFHE: An Electro-Optical Accelerator for Discretized TFHE. In arXiv. doi: 10.48550/arxiv.2405.11607.
Erickson, J.R., Nobile, N.A., Vaz, D., Vinod, G., Ocampo, C.A.R., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2023). Comparing the thermal performance and endurance of resistive and PIN silicon microheaters for phase-change photonic applications. OPTICAL MATERIALS EXPRESS, 13(6), 1677-1688.Optica Publishing Group. doi: 10.1364/OME.488564.
Gholipour, B., Barclay, P., Ou, J.Y., Qian, W., Wu, P.C., & Youngblood, N. (2023). Reconfigurable Photonic Platforms feature issue: publisher's note (vol 13, pg 2489, 2023). OPTICAL MATERIALS EXPRESS, 13(9), 2699.Optica Publishing Group. doi: 10.1364/OME.504314.
Kari, S.R., Ocampo, C.A.R.A., Jiang, L., Meng, J., Peserico, N., Sorger, V.J.J., Hu, J., & Youngblood, N. (2023). Optical and Electrical Memories for Analog Optical Computing. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 29(2), 1-12.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2023.3239918.
Nobile, N.A., Erickson, J.R., Ríos, C., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2023). Time-Resolved Temperature Mapping Leveraging the Strong Thermo-Optic Effect in Phase-Change Materials. ACS Photonics, 10(10), 3576-3585.American Chemical Society (ACS). doi: 10.1021/acsphotonics.3c00620.
Nobile, N.A., Lian, C., Sun, H., Huang, Y.S., Mills, B., Popescu, C.C., Callahan, D., Hu, J., Ocampo, C.A.R., & Youngblood, N. (2023). Nonvolatile tuning of Bragg structures using transparent phase-change materials. OPTICAL MATERIALS EXPRESS, 13(10), 2700-2710.Optica Publishing Group. doi: 10.1364/OME.498931.
Nobile, N.A., Lian, C., Sun, H., Huang, Y.S., Mills, B., Popescu, C.C., Callahan, D., Hu, J., Ocampo, C.A.R., & Youngblood, N. (2023). Nonvolatile Tuning of Bragg Structures Using Transparent Phase-Change Materials. In arXiv. doi: 10.48550/arxiv.2306.14865.
Shah, V., & Youngblood, N. (2023). AnalogVNN: A fully modular framework for modeling and optimizing photonic neural networks. APL MACHINE LEARNING, 1(2), 026116.AIP Publishing. doi: 10.1063/5.0134156.
Youngblood, N. (2023). Coherent Photonic Crossbar Arrays for Large-Scale Matrix-Matrix Multiplication. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 29(2), 1-11.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2022.3171167.
Youngblood, N., Rios Ocampo, C.A., Pernice, W.H.P., & Bhaskaran, H. (2023). Integrated optical memristors. NATURE PHOTONICS, 17(7), 561-572.Springer Nature. doi: 10.1038/s41566-023-01217-w.
Zhou, W., Dong, B., Farmakidis, N., Li, X., Youngblood, N., Huang, K., He, Y., David Wright, C., Pernice, W.H.P., & Bhaskaran, H. (2023). In-memory photonic dot-product engine with electrically programmable weight banks. Nat Commun, 14(1), 2887.Springer Nature. doi: 10.1038/s41467-023-38473-x.
Zhou, W., Dong, B., Farmakidis, N., Li, X., Youngblood, N., Huang, K., He, Y., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2023). In-memory photonic dot-product engine with electrically programmable weight banks. In arXiv. doi: 10.48550/arxiv.2304.14302.
Erickson, J.R., Shah, V., Wan, Q., Youngblood, N., & Xiong, F. (2022). Designing fast and efficient electrically driven phase change photonics using foundry compatible waveguide-integrated microheaters. Opt Express, 30(8), 13673-13689.Optica Publishing Group. doi: 10.1364/OE.446984.
Farmakidis, N., Youngblood, N., Lee, J.S., Feldmann, J., Lodi, A., Li, X., Aggarwal, S., Zhou, W., Bogani, L., Pernice, W.H., Wright, C.D., & Bhaskaran, H. (2022). Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials. Adv Sci (Weinh), 9(20), e2200383.Wiley. doi: 10.1002/advs.202200383.
Farmakidis, N., Youngblood, N., Lee, J.S., Feldmann, J., Lodi, A., Li, X., Aggarwal, S., Zhou, W., Bogani, L., Pernice, W.H., Wright, C.D., & Bhaskaran, H. (2022). Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials (Adv. Sci. 20/2022). Advanced Science, 9(20), 2270122.Wiley. doi: 10.1002/advs.202270122.
Lian, C., Vagionas, C., Alexoudi, T., Pleros, N., Youngblood, N., & Ríos, C. (2022). Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics, 11(17), 3823-3854.De Gruyter. doi: 10.1515/nanoph-2022-0089.
Nobile, N.A., Erickson, J.R., Ríos, C., Zhang, Y., Hu, J., Vitale, S.A., Xiong, F., & Youngblood, N. (2022). Time-resolved temperature mapping leveraging the strong thermo-optic effect in phase-change devices. In arXiv. doi: 10.48550/arxiv.2210.08142.
Shah, V., & Youngblood, N. (2022). AnalogVNN: A fully modular framework for modeling and optimizing photonic neural networks. In arXiv. doi: 10.48550/arxiv.2210.10048.
Tan, J.Y.S., Cheng, Z., Feldmann, J., Li, X., Youngblood, N., Ali, U.E., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2022). Monadic Pavlovian associative learning in a backpropagation-free photonic network. OPTICA, 9(7), 792-802.Optica Publishing Group. doi: 10.1364/OPTICA.455864.
Youngblood, N., Talagrand, C., Porter, B.F., Galante, C.G., Kneepkens, S., Triggs, G., Sarwat, S.G., Yarmolich, D., Bonilla, R.S., Hosseini, P., Taylor, R.A., & Bhaskaran, H. (2022). Reconfigurable Low-Emissivity Optical Coating Using Ultrathin Phase Change Materials. ACS PHOTONICS, 9(1), 90-100.American Chemical Society (ACS). doi: 10.1021/acsphotonics.1c01128.
Farmakidis, N., Swett, J.L., Youngblood, N., Li, X., Evangeli, C., Aggarwal, S., Mol, J.A., & Bhaskaran, H. (2021). Exploiting rotational asymmetry for sub-50 nm mechanical nanocalligraphy. Microsyst Nanoeng, 7(1), 84.Springer Nature. doi: 10.1038/s41378-021-00300-y.
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., & Bhaskaran, H. (2021). Parallel convolutional processing using an integrated photonic tensor core. Nature, 589(7840), 52-58.Springer Nature. doi: 10.1038/s41586-020-03070-1.
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., & Bhaskaran, H. (2021). Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core. Nature, 591(7849), E13.Springer Nature. doi: 10.1038/s41586-021-03216-9.
Feldmann, J., Youngblood, N., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2021). All-optical spiking neurosynaptic networks with self-learning capabilities. In arXiv. doi: 10.48550/arxiv.2102.09360.
Ma, X., Youngblood, N., Liu, X., Cheng, Y., Cunha, P., Kudtarkar, K., Wang, X., & Lan, S. (2021). Engineering photonic environments for two-dimensional materials. NANOPHOTONICS, 10(3), 1031-1058.De Gruyter. doi: 10.1515/nanoph-2020-0524.
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Gallo, M.L., Fu, X., Lukashchuk, A., Raja, A., Liu, J., Wright, D., Sebastian, A., Kippenberg, T., Pernice, W., & Bhaskaran, H. (2020). Parallel convolution processing using an integrated photonic tensor core. In arXiv. doi: 10.48550/arxiv.2002.00281.
Feldmann, J., Youngblood, N., Li, X., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2020). Integrated 256 Cell Photonic Phase-Change Memory With 512-Bit Capacity. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 26(2), 1-7.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/JSTQE.2019.2956871.
He, Q., Youngblood, N., Cheng, Z., Miao, X., & Bhaskaran, H. (2020). Dynamically tunable transmissive color filters using ultra-thin phase change materials. Opt Express, 28(26), 39841-39849.Optica Publishing Group. doi: 10.1364/OE.411874.
Li, X., Youngblood, N., Cheng, Z., Carrillo, S.G.C., Gemo, E., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2020). Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. OPTICA, 7(3), 218-225.Optica Publishing Group. doi: 10.1364/OPTICA.379228.
Li, X., Youngblood, N., Cheng, Z., Carrillo, S.G.C., Gemo, E., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2020). Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing (vol 7, pg 218, 2020). OPTICA, 7(12), 1804.Optica Publishing Group. doi: 10.1364/OPTICA.414370.
Ma, X., Youngblood, N., Liu, X., Cheng, Y., Cunha, P., Kudtarkar, K., Wang, X., & Lan, S. (2020). Engineering photonic environments for two-dimensional materials. In arXiv. doi: 10.48550/arxiv.2009.09133.
Shen, Y., Yang, X., Naidoo, D., Fu, X., & Forbes, A. (2020). Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser: erratum. Optica, 7(12), 1705.Optica Publishing Group. doi: 10.1364/optica.414397.
Tan, J.Y.S., Cheng, Z., Feldmann, J., Li, X., Youngblood, N., Ali, U.E., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2020). Monadic Pavlovian associative learning in a backpropagation-free photonic network. In arXiv. doi: 10.48550/arxiv.2011.14709.
Carrillo, S.G.C., Gemo, E., Li, X., Youngblood, N., Katumba, A., Bienstman, P., Pernice, W., Bhaskaran, H., & Wright, C.D. (2019). Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications. APL MATERIALS, 7(9), 091113.AIP Publishing. doi: 10.1063/1.5111840.
Farmakidis, N., Youngblood, N., Li, X., Tan, J., Swett, J.L., Cheng, Z., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci Adv, 5(11), eaaw2687.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaw2687.
Feldmann, J., Youngblood, N., Wright, C.D., Bhaskaran, H., & Pernice, W.H.P. (2019). All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569(7755), 208-214.Springer Nature. doi: 10.1038/s41586-019-1157-8.
Gemo, E., Carrillo, S.G.C., De Galarreta, C.R., Baldycheva, A., Hayat, H., Youngblood, N., Bhaskaran, H., Pernice, W.H.P., & Wright, C.D. (2019). Plasmonically-enhanced all-optical integrated phase-change memory. Opt Express, 27(17), 24724-24737.Optica Publishing Group. doi: 10.1364/OE.27.024724.
Ghazi Sarwat, S., Cheng, Z., Youngblood, N., Sharizal Alias, M., Sinha, S., Warner, J., & Bhaskaran, H. (2019). Strong Opto-Structural Coupling in Low Dimensional GeSe3 Films. Nano Lett, 19(10), 7377-7384.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.9b03039.
Li, X., Youngblood, N., Rios, C., Cheng, Z., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. OPTICA, 6(1), 1-6.Optica Publishing Group. doi: 10.1364/OPTICA.6.000001.
Li, X., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2019). Non-volatile silicon photonic memory with more than 4-bit per cell capability. doi: 10.48550/arxiv.1904.12740.
Ríos, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W.H.P., Wright, C.D., Sebastian, A., & Bhaskaran, H. (2019). In-memory computing on a photonic platform. Sci Adv, 5(2), eaau5759.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aau5759.
Youngblood, N., Rios, C., Gemo, E., Feldmann, J., Cheng, Z., Baldycheva, A., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2019). Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics. ADVANCED FUNCTIONAL MATERIALS, 29(11).Wiley. doi: 10.1002/adfm.201807571.
Youngblood, N., Talagrand, C., Porter, B., Galante, C.G., Kneepkens, S., Sarwat, S.G., Yarmolich, D., Bonilla, R.S., Hosseini, P., Taylor, R., & Bhaskaran, H. (2019). Broadly-tunable smart glazing using an ultra-thin phase-change material. doi: 10.48550/arxiv.1911.02990.
Cheng, Z., Ríos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials. Adv Mater, 30(32), e1802435.Wiley. doi: 10.1002/adma.201802435.
Cheng, Z., Ríos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Memory Devices: Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials (Adv. Mater. 32/2018). Advanced Materials, 30(32).Wiley. doi: 10.1002/adma.201870238.
Farmakidis, N., Youngblood, N., Li, X., Tan, J., Swett, J.L., Cheng, Z., Wright, D.C., Pernice, W.H., & Bhaskaran, H. (2018). Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality. In arXiv. doi: 10.48550/arxiv.1811.07651.
Rios, C., Stegmaier, M., Cheng, Z., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2018). Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics. OPTICAL MATERIALS EXPRESS, 8(9), 2455-2470.Optica Publishing Group. doi: 10.1364/OME.8.002455.
Ríos, C., Youngblood, N., Cheng, Z., Gallo, M.L., Pernice, W.H.P., Wright, C.D., Sebastian, A., & Bhaskaran, H. (2018). In-memory computing on a photonic platform. In arXiv. doi: 10.48550/arxiv.1801.06228.
Sarwat, S.G., Youngblood, N., Au, Y.Y., Mol, J.A., Wright, C.D., & Bhaskaran, H. (2018). Engineering Interface-Dependent Photoconductivity in Ge2Sb2Te5 Nanoscale Devices. ACS Appl Mater Interfaces, 10(51), 44906-44914.American Chemical Society (ACS). doi: 10.1021/acsami.8b17602.
Chen, C., Youngblood, N., Peng, R., Yoo, D., Mohr, D.A., Johnson, T.W., Oh, S.H., & Li, M. (2017). Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. Nano Lett, 17(2), 985-991.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.6b04332.
Peng, R., Khaliji, K., Youngblood, N., Grassi, R., Low, T., & Li, M. (2017). Midinfrared Electro-optic Modulation in Few-Layer Black Phosphorus. Nano Lett, 17(10), 6315-6320.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.7b03050.
Peng, R., Khaliji, K., Youngblood, N., Grassi, R., Low, T., & Li, M. (2017). Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus. In arXiv. doi: 10.48550/arxiv.1708.04209.
Xu, M., Gu, Y., Peng, R., Youngblood, N., & Li, M. (2017). Black phosphorus mid-infrared photodetectors. APPLIED PHYSICS B-LASERS AND OPTICS, 123(4), 130.Springer Nature. doi: 10.1007/s00340-017-6698-7.
Youngblood, N., & Li, M. (2017). Ultrafast photocurrent measurements of a black phosphorus photodetector. APPLIED PHYSICS LETTERS, 110(5), 051102.AIP Publishing. doi: 10.1063/1.4975360.
Youngblood, N., & Li, M. (2017). Integration of 2D materials on a silicon photonics platform for optoelectronics applications. NANOPHOTONICS, 6(6), 1205-1218.De Gruyter. doi: 10.1515/nanoph-2016-0155.
Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2017). Layer-Tunable Third-Harmonic Generation in Multilayer Black Phosphorus. ACS PHOTONICS, 4(1), 8-14.American Chemical Society (ACS). doi: 10.1021/acsphotonics.6b00639.
Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2016). Layer Tunable Third-Harmonic Generation in Multilayer Black Phosphorus. In arXiv. doi: 10.48550/arxiv.1607.05619.
Lee, S.C., Youngblood, N., Jiang, Y.B., Peterson, E.J., Stark, C.J.M., Detchprohm, T., Wetzel, C., & Brueck, S.R.J. (2015). Incorporation of indium on cubic GaN epitaxially induced on a nanofaceted Si(001) substrate by phase transition. APPLIED PHYSICS LETTERS, 107(23), 231905.AIP Publishing. doi: 10.1063/1.4936772.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. NATURE PHOTONICS, 9(4), 247-252.Springer Nature. doi: 10.1038/NPHOTON.2015.23.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett, 14(5), 2741-2746.American Chemical Society (ACS). doi: 10.1021/nl500712u.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. In arXiv. doi: 10.48550/arxiv.1402.7127.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2014). Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. In arXiv. doi: 10.48550/arxiv.1409.6412.
Liu, L., Kari, S.R., Xin, X., Youngblood, N., Zhang, Y., & Yang, J. (2025). LightML: A Photonic Accelerator for Efficient General Purpose Machine Learning. In Proceedings of the 52nd Annual International Symposium on Computer Architecture, (pp. 18-33).Association for Computing Machinery (ACM). doi: 10.1145/3695053.3731053.
Kari, S.R., Hastings, A., Nobile, N.A., Pantin, D., Shah, V., & Youngblood, N. (2024). Integrated Coherent Photonic Crossbar Arrays for Efficient Optical Computing. In CLEO 2024, (p. sm4m.6).Optica Publishing Group. doi: 10.1364/cleo_si.2024.sm4m.6.
Lian, C., Sun, H., Huang, Y.S., Vitale, S.A., Hu, J., Takeuchi, I., Youngblood, N., Vagionas, C., & Ríos Ocampo, C.A. (2024). Electrically Programmable Non-Volatile Silicon Photonic Content Addressable Memory (CAM) cell. In CLEO 2024, (p. sf2m.2).Optica Publishing Group. doi: 10.1364/cleo_si.2024.sf2m.2.
Nobile, N.A., Lian, C., Sun, H., Huang, Y.S., Mills, B., Popescu, C.C., Callahan, D., Hu, J., Ríos Ocampo, C.A., & Youngblood, N. (2024). Low-loss, nonvolatile tuning of Bragg structures with Sb2Se3. In CLEO 2024, (p. am1j.3).Optica Publishing Group. doi: 10.1364/cleo_at.2024.am1j.3.
Sun, H., Lian, C., Vásquez-Aza, F., Huang, Y.S., Vitale, S.A., Takeuchi, I., Hu, J., Youngblood, N., Pavlidis, G., & Ríos Ocampo, C.A. (2024). Controllable multi-level switching of optical phase change materials via microheater temperature profile engineering. In CLEO 2024, (p. sm2o.4).Optica Publishing Group. doi: 10.1364/cleo_si.2024.sm2o.4.
Vasquez-Aza, F., Sun, H., Lian, C., Huang, Y.S., Vitale, S.A., Takeuchi, I., Hu, J., Youngblood, N., Ocampo, C.A.R., & Pavlidis, G. (2024). Maximizing the Thermal Performance of Microheaters for Non-Volatile Phase Change Photonics: A Comparative Study of Pulse Width Parameter Effects. In 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 00, (pp. 1-6).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/itherm55375.2024.10709548.
Youngblood, N., Pintus, P., Dumont, M., Shah, V., Murai, T., Shoji, Y., Huang, D., & Bowers, J. (2024). Non-Reciprocal Materials for Photonic in-Memory Computing. In Advanced Photonics Congress 2024, (p. itu2b.6).Optica Publishing Group. doi: 10.1364/iprsn.2024.itu2b.6.
Youngblood, N., Pintus, P., Dumont, M., Shah, V., Murai, T., Shoji, Y., Huang, D., & Bowers, J. (2024). Non-reciprocal devices for in-memory photonic computing. In Frontiers in Optics + Laser Science 2024 (FiO, LS), (p. ftu1d.2).Optica Publishing Group. doi: 10.1364/fio.2024.ftu1d.2.
Zheng, M., Chu, C., Lou, Q., Youngblood, N., Li, M., Moazeni, S., & Jiang, L. (2024). OFHE: An Electro-Optical Accelerator for Discretized TFHE. In Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design, (pp. 1-6).Association for Computing Machinery (ACM). doi: 10.1145/3665314.3670839.
Nobile, N.A., Lian, C., Sun, H., Mills, B., Popescu, C.C., Hu, J., Ríos, C., & Youngblood, N. (2023). Nonvolatile band switching using transparent phase-change materials on Bragg structures. In García-Blanco, S.M., & Cheben, P. (Eds.). In Integrated Optics: Devices, Materials, and Technologies XXVII, (p. 62).SPIE, the international society for optics and photonics. doi: 10.1117/12.2647868.
Rahimi Kari, S., Pantin, D., & Youngblood, N. (2023). Scalable and efficient coherent photonic unit cell for time-multiplexed multiplication and correlation detection. In Kitayama, K.I., & Jalali, B. (Eds.). In AI and Optical Data Sciences IV, (p. 5).SPIE, the international society for optics and photonics. doi: 10.1117/12.2649510.
Youngblood, N., Shah, V., & Rahimi Kari, S. (2023). Computational, photonic crossbar arrays for scalable and efficient matrix operations. In Reed, G.T., & Knights, A.P. (Eds.). In Silicon Photonics XVIII, (p. 4).SPIE, the international society for optics and photonics. doi: 10.1117/12.2646996.
Farmakidis, N., Youngblood, N., Lee, J.S., Feldmann, J., Pernice, W.H., Wright, C.D., & Bhaskaran, H. (2022). Plasmonically Enhanced Electronically Addressable Photonic Switches Incorporating Phase-Change Materials. In Conference on Lasers and Electro-Optics, (p. sf2n.3).Optica Publishing Group. doi: 10.1364/cleo_si.2022.sf2n.3.
Farmakidis, N., Youngblood, N., Pernice, W.H.P., Bhaskaran, H., & Aggarwal, S. (2022). Engineering nanostructures at the interface between photonics and electronics. In Adibi, A., Lin, S.Y., & Scherer, A. (Eds.). In Photonic and Phononic Properties of Engineered Nanostructures XII, (p. 26).SPIE, the international society for optics and photonics. doi: 10.1117/12.2619177.
Nobile, N., Erickson, J., Ríos, C., Zhang, Y., Hu, J., Xiong, F., & Youngblood, N. (2022). Dynamic Mapping of Temperature Using Phase-Change Materials. In Conference on Lasers and Electro-Optics, (p. sf2o.3).Optica Publishing Group. doi: 10.1364/cleo_si.2022.sf2o.3.
Shah, V., & Youngblood, N. (2022). AnalogVNN: A Fully Modular Framework for Photonic Analog Neural Networks. In 2022 IEEE Photonics Conference (IPC), 00, (pp. 1-2).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/ipc53466.2022.9975607.
Zhou, W., Li, X., Youngblood, N., Pernice, W.H.P., Wright, C.D., & Bhaskaran, H. (2022). Electrical switching of Ge2Sb2Te5 memory cells based on silicon photonic waveguide microheaters. In Conference on Lasers and Electro-Optics, (p. sf2n.5).Optica Publishing Group. doi: 10.1364/cleo_si.2022.sf2n.5.
Tan, J.Y.S., Cheng, Z., Feldmann, J., Li, X., Youngblood, N., Ali, U.E., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2021). Associative learning on phase change photonics. In Subramania, G.S., & Foteinopoulou, S. (Eds.). In Active Photonic Platforms XIII, (p. 65).SPIE, the international society for optics and photonics. doi: 10.1117/12.2593248.
Gemo, E., Carrillo, S.G.C., Faneca, J., de Galarreta, C.R., Hayat, H., Youngblood, N., Baldycheva, A., Pernice, W.H.P., Bhaskaran, H., & Wright, C.D. (2020). Sub-wavelength plasmonic-enhanced phase-change memory. In Adibi, A., Lin, S.Y., & Scherer, A. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 11289, (p. 112891e-112891e-11).SPIE, the international society for optics and photonics. doi: 10.1117/12.2546031.
Li, X., Youngblood, N., Zhou, W., Feldmann, J., Swett, J., Aggarwal, S., Sebastian, A., Wright, C.D., Pernice, W., & Bhaskaran, H. (2020). On-chip Phase Change Optical Matrix Multiplication Core. In 2020 IEEE International Electron Devices Meeting (IEDM), 00, (pp. 7.5.1-7.5.4).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/iedm13553.2020.9372052.
Youngblood, N., Farmakidis, N., Li, X., & Bhaskaran, H. (2020). Nanoscale Optoelectronic Memory with Nonvolatile Phase–Change Photonics. In Conference on Lasers and Electro-Optics, 2020-May, (p. sth3r.1).Optica Publishing Group. doi: 10.1364/cleo_si.2020.sth3r.1.
Zokaee, F., Lou, Q., Youngblood, N., Liu, W., Xie, Y., & Jiang, L. (2020). LightBulb: A Photonic-Nonvolatile-Memory-based Accelerator for Binarized Convolutional Neural Networks. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 00, (pp. 1438-1443).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.23919/date48585.2020.9116494.
David Wright, C., Bhaskaran, H., Wolfram, H.P.P., Carrillo, S.G.C., Gemo, E., Baldycheva, A., Cheng, Z., Li, X., Rios, C., Youngblood, N., Feldmann, J., Gruhler, N., & Stegmaier, M. (2019). Integrated Phase-change Photonics: A strategy for merging communication and computing. In Optics InfoBase Conference Papers, Part F160-OFC 2019.
Rios, C., Youngblood, N., Cheng, Z., Gallo, M.L., Pernice, W.H.P., Wright, C., Sebastian, A., & Bhaskaran, H. (2019). All-Photonic in-Memory Computing Based on Phase-Change Materials. In 2019 Conference on Lasers and Electro-Optics, CLEO 2019 - Proceedings. doi: 10.23919/CLEO.2019.8749826.
Rios, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W.H.P., Wright, C., Sebastian, A., & Bhaskaran, H. (2019). All-Photonic in-Memory Computing Based on Phase-Change Materials. In Conference on Lasers and Electro-Optics, Part F129-CLEO_SI 2019, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2019.sm2j.2.
Wright, C.D., Bhaskaran, H., Pernice, W.H.P., Carrillo, S.G.C., Gemo, E., Baldycheva, A., Cheng, Z., Li, X., Rios, C., Youngblood, N., Feldmann, J., Gruhler, N., & Stegmaier, M. (2019). Integrated Phase-change Photonics: A Strategy for Merging Communication and Computing. In Optical Fiber Communication Conference (OFC) 2019, (p. m1d.3).Optica Publishing Group. doi: 10.1364/ofc.2019.m1d.3.
Youngblood, N., Cheng, Z., Farmakidis, N., Li, X., Tan, J., & Bhaskaran, H. (2019). Phase change photonics for brain-inspired computing (Conference Presentation). In Islam, M.S., & George, T. (Eds.). In Micro- and Nanotechnology Sensors, Systems, and Applications XI, (p. 24).SPIE, the international society for optics and photonics. doi: 10.1117/12.2520607.
Peng, R., Khaliji, K., Youngblood, N., Grassi, R., Low, T., & Li, M. (2018). Mid-infrared electro-optic modulation in few-layer black phosphorus (Conference Presentation). In Majumdar, A., Xu, X., & Hendrickson, J.R. (Eds.). In 2D Photonic Materials and Devices, (p. 18).SPIE, the international society for optics and photonics. doi: 10.1117/12.2294528.
Chen, C., Yoo, D., Youngblood, N., Oh, S.H., & Li, M. (2017). Mid-Infrared Plasmonic Coaxial Nanorings for Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy. In Conference on Lasers and Electro-Optics, 2017-January, (p. jth2a.36).Optica Publishing Group. doi: 10.1364/cleo_at.2017.jth2a.36.
Cheng, Z., Ríos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., & Bhaskaran, H. (2017). On-chip phase-change photonic memory and computing. In Subramania, G.S., & Foteinopoulou, S. (Eds.). In Active Photonic Platforms IX, 10345, (p. 1034519).SPIE, the international society for optics and photonics. doi: 10.1117/12.2272127.
Peng, R., Youngblood, N., & Li, M. (2017). Mid-Infrared Electro-Optic Modulation in Black Phosphorus. In Conference on Lasers and Electro-Optics, 2017-January, (p. fw4h.7).Optica Publishing Group. doi: 10.1364/cleo_qels.2017.fw4h.7.
Chen, C., Youngblood, N., Mohr, D., Yoo, D., Johnson, T., Peng, R., Oh, S.H., & Li, M. (2016). Black Phosphorus Photodetector on Silicon Photonic and Plasmonic Hybrid Platform. In Conference on Lasers and Electro-Optics, (p. sm4e.6).Optica Publishing Group. doi: 10.1364/cleo_si.2016.sm4e.6.
Youngblood, N., & Li, M. (2016). Ultrafast Photocurrent Spectroscopy in a Black Phosphorus Van der Waals Heterostructure. In Conference on Lasers and Electro-Optics, (p. stu1r.4).Optica Publishing Group. doi: 10.1364/cleo_si.2016.stu1r.4.
Youngblood, N., Peng, R., Nemilentsau, A., Low, T., & Li, M. (2016). Thickness dependent third-harmonic generation in few-layer black phosphorus. In Conference on Lasers and Electro-Optics, (p. jth4c.9).Optica Publishing Group. doi: 10.1364/cleo_at.2016.jth4c.9.
Chen, C., Youngblood, N., & Li, M. (2015). Study of Black Phosphorus Anisotropy on Silicon Photonic Waveguide. In 2015 Optoelectronics Global Conference (OGC), (pp. 1-3).Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/ogc.2015.7336864.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). A black phosphorus FET integrated on a silicon waveguide for high speed, low dark current photodetection. In CLEO: 2015, 2015-August, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2015.sm3g.3.
Youngblood, N., Chen, C., Koester, S.J., & Li, M. (2015). A black phosphorus FET integrated on a silicon waveguide for high speed, low dark current photodetection. In CLEO: Science and Innovations, CLEO-SI 2015, (p. 2267). doi: 10.1364/CLEO_SI.2015.SM3G.3.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Simultaneous optical modulation and detection using graphene integrated on a silicon waveguide. In Optics InfoBase Conference Papers.
Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., & Li, M. (2014). Simultaneous optical modulation and detection using graphene integrated on a silicon waveguide. In CLEO: 2014, 2014-January, (pp. 1-2).Optica Publishing Group. doi: 10.1364/cleo_si.2014.sth1m.3.