Pitt | Swanson Engineering

Since its founding in 1893 by two legends, George Westinghouse and Reginald Fessenden, the Department of Electrical and Computer Engineering at Pitt has excelled in education, research, and service.  Today, the department features innovative undergraduate and graduate programs and world-class research centers and labs, combining theory with practice at the nexus of computer and electrical engineering, for our students to learn, develop, and lead lives of impact.





Mar
21
2019

Pitt researchers receive $550,000 NSF CAREER award to develop new brain-computer therapy method for people with autism

Bioengineering, Electrical & Computer

PITTSBURGH (March 21, 2019) … Autism was first described by U.S. researchers more than 70 years ago, and today the Centers for Disease Control and Prevention (CDC) estimates that 1 in 59 children are identified with autism spectrum disorder (ASD), affecting more than 3.5 million Americans. Although clinical techniques are used to help patients with ASD respond to stress and other factors, none are known to couple with technology that could monitor brain response in real time and provide the patient with feedback. However, thanks to a $550,000 award from the National Science Foundation, engineers at the University of Pittsburgh and clinicians at the UPMC Western Psychiatric Hospital, a new intervention using electroencephalography (EEG)-guided, non-invasive brain-computer interface (BCI) technology could complement clinical treatments and improve emotion regulation in people with ASD. The multidisciplinary team includes Murat Akcakaya, PhD, assistant professor of electrical and computer engineering at Pitt’s Swanson School of Engineering, and Carla A. Mazefsky, PhD, associate professor of psychiatry and psychology in Pitt’s Department of Psychiatry. The proposal is funded through an NSF CAREER award, which supports early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization.“People on the autism spectrum today have access to effective clinical strategies or technologies, but none are coupled effectively to provide real-time feedback in real-life activities. This limits reinforcement techniques that the patient can utilize on his or her own, without the need for a clinical appointment,” Dr. Akcakaya explained. “However, by utilizing EEG to couple clinical techniques with BCI technologies, we can develop a closed-loop system that will help patients better learn how to recognize emotional triggers and respond with appropriate techniques generalizing the effects of clinical treatment strategies to real-life activities.” Akcakaya and Mazefsky will develop social interaction scenarios in virtual environments while recording EEG responses simultaneously in order to detect patterns that represent changes in distress levels. The virtual scenario will then present audio or visual cues to help remind them how to handle stress. The project will also develop new machine learning algorithms and neuroscience methods to identify EEG features associated with emotion regulation to classify between distress and non-distress conditions, and to distinguish among different distress levels.The two will also investigate the promise of these EEG and virtual reality approaches within the context of Mazefsky’s randomized controlled clinical trial funded by the US Department of Defense. The clinical trial is testing the efficacy of an intervention Mazefsky and colleagues developed, called the Emotion Awareness and Skills Enhancement (EASE) program, in 12- to 21-year-old verbal youth with ASD. “EASE emphasizes awareness of one’s own emotional responses as a foundational skill that promotes the ability to manage intense negative emotions, which is taught through mindful awareness,” Mazefsky explained. “By coupling the clinical strategies we teach in EASE with technological interventions, we believe we can enhance patients’ ability to distinguish different distress levels and therefore potentially reap even greater (and more generalized) benefit.”The CAREER award will also enable Akcakaya to develop courses related to the research and outreach activities to promote STEM and ASD research to K-12 populations and the broader public. Outreach will focus especially on individuals with ASD, their families, and caretakers.  “Early diagnosis and intervention can help patients with ASD and their families improve quality of life, and so providing clinicians with a new tool that both enhances and reinforces what patients learn is critical to closing the loop between triggers and responses,” Akcakaya said. “Additionally machine learning based on biological responses could also be integrated in to the existing technologically driven intervention techniques targeting patients across the autism spectrum.  Eventually, the technology could be incorporated in an accessory like a smart watch or glasses, enhancing patient privacy and building confidence.” ###

Feb
28
2019

Swanson School Undergrad Kaylene Stocking Wins the University’s Top Student Award for Scholarship

Bioengineering, Electrical & Computer, Student Profiles

Click here to view the PittWire Accolade. PITTSBURGH (February 28, 2019) … The 43rd annual Honors Convocation recognized the academic achievements of nearly 3,700 students and 478 faculty members, including the University’s highest awards for undergraduate students. The Emma W. Locke Award, given to a graduating senior in recognition of high scholarship, character and devotion to the ideals of the University of Pittsburgh, went to the Swanson School of Engineering’s Kaylene Stocking. “We are very proud of Kaylene’s accomplishments,” said Sanjeev Shroff, Distinguished Professor and Gerald E. McGinnis Chair of Bioengineering. “She has effectively leveraged Swanson School resources and her own ingenuity to achieve academic excellence within and outside of the classroom and make impactful contributions to the University community. We know she has a bright, successful future ahead!” Stocking is pursuing a bachelor’s degree in both bioengineering and computer engineering. Her research has led to three journal publications, two presentations and a Goldwater Scholarship honorable mention. She is also an undergraduate teaching assistant, an Honors College ambassador and member of the Pitt orchestra. For the past two years, she has been working in the BIONIC Lab led by Takashi D. Y. Kozai, assistant professor of bioengineering. Her work focuses on how researchers can improve the longevity of neural implant technology. "It has been an amazing experience to work with Kaylene,” said Kozai. “Her off-the-cuff insights into projects and scientific discussion as well as her simultaneous bird's-eye view perspective and understanding of how each individual piece of data fits into the larger story has been a major driving force in our research lab." Stocking plans to continue her education after graduating this spring. Regarding her time at Pitt, she said, “I'm so grateful for the many opportunities I've had thanks to the amazing Engineering and Honors College communities. I'd like to thank my professors, mentors, family, and friends for their encouragement and support over the last four years.” ###

Feb
26
2019

Pennsylvania's Climate Moment

Electrical & Computer, MEMS, Nuclear

Forty-two percent of Pennsylvania’s electricity is generated by nuclear plants, but that percentage may decline as a result of the announced closure of two of Pennsylvania’s five nuclear plants in 2019 and 2021, respectively. To explore what impact those closures will have on the Commonwealth's energy portfolio, as well as on decarbonization plans, the University of Pittsburgh's Center for Energy will host a special forum, "Pennsylvania's Climate Moment," on Friday, March 8 from 11:00am - 12:30 pm in Posvar 3911. Heng Ban, PhDR.K. Mellon Professor in Energy, Professor of Mechanical Engineering and Materials Science, and Director of the Stephen R. Tritch Nuclear Engineering ProgramUniversity of Pittsburgh Swanson School of Engineering Hillary BrightDirector, State Policies Blue Green Alliance Sam RessinFormer PresidentUniversity of Pittsburgh Climate Stewardship Society Kathleen RobertsonSenior Manager of Environmental Policy and Wholesale Market DevelopmentExelon John WalliserSenior Vice-President, Legal AffairsPennsylvania Environmental Council For more information, contact the Center for Energy at 412-624-7476 or centerforenergy@engr.pitt.edu.

Feb
4
2019

Pitt Power Engineering Seniors Nathan Carnovale and Shamus O’Haire named IEEE PES Scholars

Electrical & Computer

PITTSBURGH (February 4, 2019) … The Institute of Electrical and Electronics Engineers (IEEE)Power and Energy Society (PES) selected University of Pittsburgh seniors Nathan Carnovale and Shamus (James) O’Haire as recipients of the 2018-19 IEEE PES Scholarship Plus Award. Both are majoring in electrical and computer engineering at Pitt’s Swanson School of Engineering. This is Mr. Carnovale’s second IEEE PES Scholarship in as many years. “Being named an IEEE PES Scholar is well-respected in the field of power engineering, and both Nate and Shamus are outstanding ambassadors for our program,” said Robert Kerestes, assistant professor of electrical and computer engineering at Pitt. “We are incredibly proud of their accomplishments and I think they have great potential in their future careers.”The IEEE PES Scholarship Plus Initiative awarded scholarships to 174 electrical engineering students from 96 universities across the U.S., Canada, and Puerto Rico. Applicants for the scholarships were evaluated based on high achievement with a strong GPA, distinctive extracurricular commitments, and dedication to the power and energy field. Over the past seven years, the Scholarship Plus Initiative has awarded more than $3.5 million in scholarships to students interested in pursuing a career in the power and energy industry. Carnovale and O’Haire are the Swanson School’s 11th and 12th PES recipients since the scholarship’s inception in 2011 and continue the School’s seven-year streak of at least one awardee each year. Also, according to IEEE, Pitt is one of only 16 universities that have had at least one recipient every year since 2011. About Nathan CarnovaleNate Carnovale is scheduled to graduate from the University of Pittsburgh in December 2019 with a bachelor of science in electrical engineering and a concentration in electric power, and plans to pursue an M.S. degree in electric power engineering at Pitt starting in spring 2020. During his undergraduate career, he interned with Eaton for two summers, working at Eaton’s Power Systems Experience Center and in Eaton’s Power Systems Automation services group in Warrendale, PA. There he gained experience in power systems metering and monitoring, as well as experience installing, wiring, and programming Eaton demos at the Experience Center. He will be working in Eaton’s Power Systems Controls group this summer working with microgrids. For four semesters at Pitt, Carnovale has been a teaching assistant for the Art of Making, an introductory engineering course to hands-on systems design. He is currently working to develop an adapted physical education learning tool for students with physical and mental challenges at the Western Pennsylvania School for Blind Children in Pittsburgh, a project he started during his time as a student in the Art of Making course.About Shamus (James) O’HaireShamus O’Haire is scheduled to graduate in spring 2019 with a bachelor of science degree in electrical engineering with a concentration in power systems and a minor in computer science. During his career at Pitt, he has spent three summers interning at Exelon Corp., a Fortune 100 energy company that operates electric generation nationwide as well as electric distribution in the Northeastern US. He gained industry experience in system operations, transmission planning, and substations engineering during his time with the company, and hopes these experiences will be a springboard for his future career in the power and energy industry. O’Haire currently serves as the Chief Electronics Engineer for Pitt Aero Society of Automotive Engineers, and is a member of IEEE. ###

Jan
29
2019

Lights, Camera, Action: Pitt iGEM team captures silver medal for their “Molecular Movie Camera”

Bioengineering, Electrical & Computer, Student Profiles

PITTSBURGH (January 29, 2019) … The ability to measure and record molecular signals in a cell can help researchers better understand its behavior, but current systems are limited and provide only a “snapshot” of the environment rather than a more informative timeline of cellular events. In an effort to give researchers a complete understanding of event order, a team of University of Pittsburgh undergraduate students prototyped a frame-by-frame “video” recording device using bacteria. The group created this project for the 2018 International Genetically Engineered Machine (iGEM) competition, an annual synthetic biology research competition in which over 300 teams from around the world design and carry out projects to solve an open research or societal problem. The Pitt undergraduate group received a silver medal for their device titled “CUTSCENE.” The iGEM team included two Swanson School of Engineering students: Evan Becker, a junior electrical engineering student, and Vivian Hu, a junior bioengineering student. Other team members included Matthew Greenwald, a senior microbiology student; Tucker Pavelek, a junior molecular biology and physics student; Libby Pinto, a sophomore microbiology and political science student; and Zemeng Wei, a senior chemistry student. CUTSCENE aims to show a “video” of cellular activity by recording events in the cell using modified CRISPR/Cas9 technology. Hu said, “By knowing what time molecular events are happening inside of a cell, we are able to better understand a cell's history and how it responds to external stimuli.” Their system improved upon older methods that could only record the levels of stimuli at a single point in time. They used a movie analogy to illustrate their objective. “Try guessing the plot of a movie by looking at the poster; you can get an idea of what is going on, but to really understand the story, you need to watch the film,” said Becker. “Unless researchers are taking many snapshots of the cellular activity over time, the image doesn’t give any sense of causality. You can see that the molecule is there, but you don't know where it has been or where it is going.” For their project, the iGEM team used modified CRISPR/Cas9 technology called a base editor. The CRISPR/Cas9 system contains two key components: a guideRNA (gRNA) that matches a specific sequence of DNA and a Cas9 protein that makes a cut at the specific sequence, ultimately leading to the insertion or deletion of base pairs - the building blocks of DNA. In addition to these components, a CRISPR/Cas9 base editor contains an enzyme called cytidine deaminase that is able to make a known single nucleotide mutation at a desired location of DNA. “We achieved a method of true chronological event recording by introducing recording plasmids with repeating units of DNA and multiple gRNA to direct our base editor construct,” said Hu. “This technique will provide an understanding of the order in which molecules and proteins appear in systems.” “A recording plasmid can be thought of as a roll of unexposed film, with each frame being an identical sequence of DNA,” explained Wei. “A single-guideRNA (sgRNA) directs the CRISPR/Cas9 base editor to move along the recording plasmid, making mutations at a timed rate and constantly shifting which frame is in front of our base editor. Activated by the presence of a stimulus, another sgRNA can mark the current frame.” The iGEM team’s approach to this technology will allow them to figure out which molecules are abundant at specific times and perhaps reveal hidden, causal relationships. The information gathered from the device has many potential applications and may allow researchers to develop medicines and therapies based on the timing of the cellular malfunction. “The team did a tremendous amount of lab work over the summer, implementing the cellular event recording methodology,” said Alex Deiters, a professor of chemistry at Pitt who helped advise the iGEM team. “Most importantly, the students developed this clever idea on their own by first identifying a current technology gap and then applying modern gene editing machinery to it. The silver medal is well-deserved!” In addition to Dr. Deiters, the 2018 Pitt iGEM team was advised by Dr. Jason Lohmueller, American Cancer Society Postdoctoral Fellow in the Department of Immunology; Dr. Natasa Miskov-Zivanov, Assistant Professor of Electrical and Computer Engineering, Bioengineering, and Computational and Systems Biology; Dr. Sanjeev Shroff, Distinguished Professor and Gerald E. McGinnis Chair of Bioengineering; and Dr. Cheryl Telmer, a Research Biologist at Carnegie Mellon University. Funding for the 2018 Pitt iGEM effort was provided by the University of Pittsburgh (Office of the Senior Vice Chancellor for Research, Honors College, Kenneth P. Dietrich School of Arts and Sciences, Department of Biological Sciences, Department of Chemistry, Swanson School of Engineering, Department of Bioengineering, and Department of Electrical & Computer Engineering), New England Biolabs (NEB), and Integrated DNA Technologies (IDT). ###

Upcoming Events


back
view more