headshot

Paul Leu

Associate Professor
Research Group Website Google Scholar Profile Industrial Engineering Mechanical Engineering & Materials Science

overview

Dr. Paul W. Leu received his Ph.D. from Stanford University and worked as a postdoctoral fellow at the University of California, Berkeley before joining the University of Pittsburgh as faculty in 2010. He is currently an Associate Professor and B.P. America Faculty Fellow in the Industrial Engineering Department at the University of Pittsburgh. He has been recipient of the Oak Ridge Associated University Powe Junior Faculty Enhancement Award, UPS Minority Advancement Award, and the NSF CAREER Award. He is also co-Director of the NSF Industry University Cooperative Research Center called MDS-Rely (mds-rely.org) with Case Western Reserve University. His research has been showcased in Industrial Engineering magazine, Pittsburgh NPR, and Pittsburgh Magazine.

about

(2012) Pitt Innovation in Education Award.

(2012) Powe Junior Faculty Enhancement Award.

(2006) Harvey Fellow.

(2002) Burt and Deedee McMurtry Stanford Graduate Fellow.

(2002) National Science Foundation Graduate Fellow.

(2001) Buckley-Sartwelle Scholarship.

(2000) Louis J. Walsh Scholarship in Engineering.

(1998) Edward J. Bloustein Distinguished Scholar.

(1998) W.L. Moody, Jr. Scholarship in Engineering.

Ph.D., Mechanical Engineering, Stanford University, 2008

M.S., Mechanical Engineering, Solid Mechanics specialization, Stanford University, 2004

B.S., Mechanical Engineering, Rice University, 2002

Zhou, Z., Walker, S.B., LeMieux, M., & Leu, P.W. (2021). Polymer-Embedded Silver Microgrids by Particle-Free Reactive Inks for Flexible High-Performance Transparent Conducting Electrodes. ACS APPLIED ELECTRONIC MATERIALS, 3(5), 2079-2086.American Chemical Society (ACS). doi: 10.1021/acsaelm.1c00107.

Galante, A.J., Haghanifar, S., Romanowski, E.G., Shanks, R.M.Q., & Leu, P.W. (2020). Superhemophobic and Antivirofouling Coating for Mechanically Durable and Wash-Stable Medical Textiles. ACS APPLIED MATERIALS & INTERFACES, 12(19), 22120-22128.American Chemical Society (ACS). doi: 10.1021/acsami.9b23058.

Galante, A.J., Haghanifar, S., Romanowski, E.G., Shanks, R.M.Q., & Leu, P.W. (2020). Correction to Superhemophobic and Antivirofouling Coating for Mechanically Durable and Wash-Stable Medical Textiles. ACS Appl Mater Interfaces, 12(26), 30016.American Chemical Society (ACS). doi: 10.1021/acsami.0c08966.

Haghanifar, S., Galante, A.J., & Leu, P.W. (2020). Challenges and Prospects of Bio-Inspired and Multifunctional Transparent Substrates and Barrier Layers for Optoelectronics. ACS NANO, 14(12), 16241-16265.American Chemical Society (ACS). doi: 10.1021/acsnano.0c06452.

Haghanifar, S., McCourt, M., Cheng, B., Wuenschell, J., Ohodnicki, P., & Leu, P.W. (2020). Discovering high-performance broadband and broad angle antireflection surfaces by machine learning. OPTICA, 7(7), 784-789.The Optical Society. doi: 10.1364/OPTICA.387938.

Xu, Z., Zhou, Z., Li, B., Wang, G., & Leu, P.W. (2020). Identification of Efficient Active Sites in Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction. JOURNAL OF PHYSICAL CHEMISTRY C, 124(16), 8689-8696.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.9b11090.

Haghanifar, S., McCourt, M., Cheng, B., Wuenschell, J., Ohodnicki, P., & Leu, P.W. (2019). Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization. MATERIALS HORIZONS, 6(8), 1632-1642.Royal Society of Chemistry (RSC). doi: 10.1039/c9mh00589g.

Haghanifar, S., Tomasovic, L.M., Galante, A.J., Pekker, D., & Leu, P.W. (2019). Stain-resistant, superomniphobic flexible optical plastics based on nano-enoki mushroom-like structures. JOURNAL OF MATERIALS CHEMISTRY A, 7(26), 15698-15706.Royal Society of Chemistry (RSC). doi: 10.1039/c9ta01753d.

Zhou, Z., Gao, T., McCarthy, S., Kozbial, A., Tan, S., Pekker, D., Li, L., & Leu, P.W. (2019). Parahydrophobicity and stick-slip wetting dynamics of vertically aligned carbon nanotube forests. CARBON, 152, 474-481.Elsevier BV. doi: 10.1016/j.carbon.2019.06.012.

Gao, T., Haghanifar, S., Lindsay, M.G., Lu, P., Kayes, M.I., Pafchek, B.D., Zhou, Z., Ohodnicki, P.R., & Leu, P.W. (2018). Fundamental Performance Limits and Haze Evaluation of Metal Nanomesh Transparent Conductors. ADVANCED OPTICAL MATERIALS, 6(9), 1700829.Wiley. doi: 10.1002/adom.201700829.

Haghanifar, S., De Vecchis, R.T.R., Kim, K.J., Wuenschell, J., Sharma, S.P., Lu, P., Ohodnicki, P., & Leu, P.W. (2018). Flexible nanograss with highest combination of transparency and haze for optoelectronic plastic substrates. NANOTECHNOLOGY, 29(42), 42LT01.IOP Publishing. doi: 10.1088/1361-6528/aad671.

Haghanifar, S., Lu, P., Kayes, M.I., Tan, S., Kim, K.J., Gao, T., Ohodnicki, P., & Leu, P.W. (2018). Self-cleaning, high transmission, near unity haze OTS/silica nanostructured glass. JOURNAL OF MATERIALS CHEMISTRY C, 6(34), 9191-9199.Royal Society of Chemistry (RSC). doi: 10.1039/c8tc02513d.

Kayes, M.I., Galante, A.J., Stella, N.A., Haghanifar, S., Shanks, R.M.Q., & Leu, P.W. (2018). Stable lotus leaf-inspired hierarchical, fluorinated polypropylene surfaces for reduced bacterial adhesion. REACTIVE & FUNCTIONAL POLYMERS, 128, 40-46.Elsevier BV. doi: 10.1016/j.reactfunctpolym.2018.04.013.

Nguyen, T.B., Liu, D., Kayes, M.I., Wang, B., Rashin, N., Leu, P.W., & Tran, T. (2018). Critical heat flux enhancement in pool boiling through increased rewetting on nanopillar array surfaces. SCIENTIFIC REPORTS, 8(1), 4815.Springer Science and Business Media LLC. doi: 10.1038/s41598-018-22693-z.

Wang, B., Gao, T., Zhou, Z., Bradley, P., & Leu, P.W. (2018). Frontside scattering structures for enhanced performance in flexible ultrathin crystalline silicon solar cells. JOURNAL OF PHOTONICS FOR ENERGY, 8(3), 1.SPIE-Intl Soc Optical Eng. doi: 10.1117/1.JPE.8.030501.

Gao, T., Wang, B., & Leu, P.W. (2017). Plasmonic nanomesh sandwiches for ultrathin film silicon solar cells. JOURNAL OF OPTICS, 19(2), 025901.IOP Publishing. doi: 10.1088/2040-8986/19/2/025901.

Haghanifar, S., Gao, T., De Vecchis, R.T.R., Pafchek, B., Jacobs, T.D.B., & Leu, P.W. (2017). Ultrahigh-transparency, ultrahigh-haze nanograss glass with fluid-induced switchable haze. OPTICA, 4(12), 1522-1525.The Optical Society. doi: 10.1364/OPTICA.4.001522.

Huang, P.S., Qin, F., Xiong, Z., Shim, H.W., Gao, T., Leu, P., & Lee, J.K. (2017). Novel Carrier Doping Mechanism for Transparent Conductor: Electron Donation from Embedded Ag Nanoparticles to the Oxide Matrix. ACS APPLIED MATERIALS & INTERFACES, 9(23), 19973-19979.American Chemical Society (ACS). doi: 10.1021/acsami.7b03871.

Wang, B., Chen, K.P., & Leu, P.W. (2016). Engineering inverse woodpile and woodpile photonic crystal solar cells for light trapping. NANOTECHNOLOGY, 27(22), 225404.IOP Publishing. doi: 10.1088/0957-4484/27/22/225404.

Wang, B., Gao, T., & Leu, P.W. (2016). Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays. NANO ENERGY, 19, 471-475.Elsevier BV. doi: 10.1016/j.nanoen.2015.10.039.

Gao, T., Huang, P.S., Lee, J.K., & Leu, P.W. (2015). Hierarchical metal nanomesh/microgrid structures for high performance transparent electrodes. RSC ADVANCES, 5(87), 70713-70717.Royal Society of Chemistry (RSC). doi: 10.1039/c5ra14851k.

Gao, T., Li, Z., Huang, P.S., Shenoy, G.J., Parobek, D., Tan, S., Lee, J.K., Liu, H., & Lee, P.W. (2015). Hierarchical Graphene/Metal Grid Structures for Stable, Flexible Transparent Conductors. ACS NANO, 9(5), 5440-5446.American Chemical Society (ACS). doi: 10.1021/acsnano.5b01243.

Wang, B., & Leu, P.W. (2015). High index of refraction nanosphere coatings for light trapping in crystalline silicon thin film solar cells. NANO ENERGY, 13, 226-232.Elsevier BV. doi: 10.1016/j.nanoen.2014.10.040.

Yan, A., Poole, Z.L., Chen, R., Leu, P.W., Ohodnicki, P., & Chen, K.P. (2015). Scalable Fabrication of Metal Oxide Functional Materials and Their Applications in High-Temperature Optical Sensing. JOM, 67(1), 53-58.Springer Science and Business Media LLC. doi: 10.1007/s11837-014-1235-1.

Ding, B., Gao, T., Wang, Y., Waldeck, D.H., Leu, P.W., & Lee, J.K. (2014). Synergistic effect of surface plasmonic particles in PbS/TiO2 heterojunction solar cells. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 128, 386-393.Elsevier BV. doi: 10.1016/j.solmat.2014.06.001.

Gao, T., Stevens, E., Lee, J.K., & Leu, P.W. (2014). Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping. OPTICS LETTERS, 39(16), 4647-4650.The Optical Society. doi: 10.1364/OL.39.004647.

Gao, T., Wang, B., Ding, B., Lee, J.K., & Leu, P.W. (2014). Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes. NANO LETTERS, 14(4), 2105-2110.American Chemical Society (ACS). doi: 10.1021/nl5003075.

Kayes, M.I., & Leu, P.W. (2014). Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics. NANOSCALE RESEARCH LETTERS, 9(1), 620.Springer Science and Business Media LLC. doi: 10.1186/1556-276X-9-620.

Wang, B., Stevens, E., & Leu, P.W. (2014). Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells. Opt Express, 22 Suppl 2(S2), A386-A395. doi: 10.1364/OE.22.00A386.

Gao, T., & Leu, P.W. (2013). Copper nanowire arrays for transparent electrodes. JOURNAL OF APPLIED PHYSICS, 114(6), 063107.AIP Publishing. doi: 10.1063/1.4818498.

Gao, T., & Leu, P.W. (2013). The role of propagating modes in silver nanowire arrays for transparent electrodes. Opt Express, 21 Suppl 3(S3), A419-A429. doi: 10.1364/OE.21.00A419.

Hua, B., Wang, B., Yu, M., Leu, P.W., & Fan, Z. (2013). Rational geometrical design of multi-diameter nanopillars for efficient light harvesting. NANO ENERGY, 2(5), 951-957.Elsevier BV. doi: 10.1016/j.nanoen.2013.03.016.

Wang, B., & Leu, P.W. (2012). Enhanced absorption in silicon nanocone arrays for photovoltaics. NANOTECHNOLOGY, 23(19), 194003.IOP Publishing. doi: 10.1088/0957-4484/23/19/194003.

Wang, B., & Leu, P.W. (2012). Tunable and selective resonant absorption in vertical nanowires. OPTICS LETTERS, 37(18), 3756-3758.The Optical Society. doi: 10.1364/OL.37.003756.

WANG, B., GAO, T., & LEU, P.W. (2012). COMPUTATIONAL SIMULATIONS OF NANOSTRUCTURED SOLAR CELLS. Nano LIFE, 02(02), 1230007.World Scientific Pub Co Pte Lt. doi: 10.1142/s1793984411000517.

Fan, Z., Kapadia, R., Leu, P., Zhang, X., Chueh, Y.L., Takei, K., Yu, K., Jamshidi, A., Rathore, A.A., Ruebusch, D.J., Wu, M., & Javey, A. (2010). Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Letters. doi: 10.1021/n11010788.

Fan, Z., Kapadia, R., Leu, P.W., Zhang, X., Chueh, Y.L., Takei, K., Yu, K., Jamshidi, A., Rathore, A.A., Ruebusch, D.J., Wu, M., & Javey, A. (2010). Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption. NANO LETTERS, 10(10), 3823-3827.American Chemical Society (ACS). doi: 10.1021/nl1010788.

Ko, H., Takei, K., Kapadia, R., Chuang, S., Fang, H., Leu, P.W., Ganapathi, K., Plis, E., Kim, H.S., Chen, S.Y., Madsen, M., Ford, A.C., Chueh, Y.L., Krishna, S., Salahuddin, S., & Javey, A. (2010). Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. NATURE, 468(7321), 286-289.Springer Science and Business Media LLC. doi: 10.1038/nature09541.

McIntyre, P.C., Adhikari, H., Goldthorpe, I.A., Hu, S., Leu, P.W., Marshall, A.F., & Chidsey, C.E.D. (2010). Group IV semiconductor nanowire arrays: epitaxy in different contexts. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 25(2), 024016.IOP Publishing. doi: 10.1088/0268-1242/25/2/024016.

Takei, K., Takahashi, T., Ho, J.C., Ko, H., Gillies, A.G., Leu, P.W., Fearing, R.S., & Javey, A. (2010). Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. NATURE MATERIALS, 9(10), 821-826.Springer Science and Business Media LLC. doi: 10.1038/nmat2835.

Fan, Z., Razavi, H., Do, J.W., Moriwaki, A., Ergen, O., Chueh, Y.L., Leu, P.W., Ho, J.C., Takahashi, T., Reichertz, L.A., Neale, S., Yu, K., Wu, M., Ager, J.W., & Javey, A. (2009). Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. NATURE MATERIALS, 8(8), 648-653.Springer Science and Business Media LLC. doi: 10.1038/NMAT2493.

Fan, Z., Ruebusch, D.J., Rathore, A.A., Kapadia, R., Ergen, O., Leu, P.W., & Javey, A. (2009). Challenges and Prospects of Nanopillar-Based Solar Cells. NANO RESEARCH, 2(11), 829-843.Springer Science and Business Media LLC. doi: 10.1007/s12274-009-9091-y.

Ho, J.C., Ford, A.C., Chueh, Y.L., Leu, P.W., Ergen, O., Takei, K., Smith, G., Majhi, P., Bennett, J., & Javey, A. (2009). Nanoscale doping of InAs via sulfur monolayers. APPLIED PHYSICS LETTERS, 95(7), 072108.AIP Publishing. doi: 10.1063/1.3205113.

Hu, S., Leu, P.W., Marshall, A.F., & McIntyre, P.C. (2009). Single-crystal germanium layers grown on silicon by nanowire seeding. NATURE NANOTECHNOLOGY, 4(10), 649-653.Springer Science and Business Media LLC. doi: 10.1038/nnano.2009.233.

Ko, H., Lee, J., Schubert, B.E., Chueh, Y., Leu, P., Fearing, R.S., & Javey, A. (2009). Hybrid core-shell nanowire forests as self-selective chemical connectors. Nano Letters, 9(5), 2054-2058. doi: 10.1021/n1900343b.

Ko, H., Lee, J., Schubert, B.E., Chueh, Y.L., Leu, P.W., Fearing, R.S., & Javey, A. (2009). Hybrid Core-Shell Nanowire Forests as Self-Selective Chemical Connectors. NANO LETTERS, 9(5), 2054-2058.American Chemical Society (ACS). doi: 10.1021/nl900343b.

Koto, M., Leu, P.W., & McIntyre, P.C. (2009). Vertical Germanium Nanowire Arrays in Microfluidic Channels for Charged Molecule Detection. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 156(2), K11-K16.The Electrochemical Society. doi: 10.1149/1.3033522.

Leu, P., Svizhenko, A., & Cho, K. (2008). Ab Initio study of the mechanical and electronic properties of strained silicon nanowires. Physical Review B, 77(23).

Leu, P.W., Adhikari, H., Koto, M., Kim, K.H., de Rouffignac, P., Marshall, A.F., Gordon, R.G., Chidsey, C.E.D., & McIntyre, P.C. (2008). Oxide-encapsulated vertical germanium nanowire structures and their DC transport properties. NANOTECHNOLOGY, 19(48), 485705.IOP Publishing. doi: 10.1088/0957-4484/19/48/485705.

Leu, P.W., Svizhenko, A., & Cho, K. (2008). Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. PHYSICAL REVIEW B, 77(23).American Physical Society (APS). doi: 10.1103/PhysRevB.77.235305.

Svizhenko, A., Leu, P.W., & Cho, K. (2007). Effect of growth orientation and surface roughness on electron transport in silicon nanowires. PHYSICAL REVIEW B, 75(12), 125417.American Physical Society (APS). doi: 10.1103/PhysRevB.75.125417.

Leu, P.W., Shan, B., & Cho, K. (2006). Surface chemical control of the electronic structure of silicon nanowires: Density functional calculations. PHYSICAL REVIEW B, 73(19).American Physical Society (APS). doi: 10.1103/PhysRevB.73.195320.

Gao, T., Wang, B., Ding, B., Lee, J.K., & Leu, P.W. (2014). Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes (vol 14, pg 2105, 2014). MRS Spring Meeting.San Francisco, CA. doi: 10.1021/nl501687p.

Wang, B., Stevens, E., & Leu, P.W. (2014). Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells. In OPTICS EXPRESS, 22(5), (pp. A386-A395).The Optical Society. doi: 10.1364/OE.22.00A386.

Gao, T., & Leu, P.W. (2013). The role of propagating modes in silver nanowire arrays for transparent electrodes. MRS Spring Meeting.San Francisco, CA. doi: 10.1364/OE.21.00A419.