Pitt | Swanson Engineering
News Listing

Mar

Mar
13
2020

Mimicking Cancer to Avoid Transplant Rejection

Bioengineering, Chemical & Petroleum

Originally published by UPMC Media Relations. Reposted with permission. PITTSBURGH – Inspired by a tactic cancer cells use to evade the immune system, University of Pittsburgh researchers have engineered tiny particles that can trick the body into accepting transplanted tissue as its own. Rats that were treated with these cell-sized microparticles developed permanent immune tolerance to grafts — including a whole limb — from a donor rat, while keeping the rest of their immune system intact, according to a paper published today in Science Advances. “It’s like hacking into the immune system borrowing a strategy used by one of humanity’s worst enemies to trick the body into accepting a transplant,” said senior author Steven Little, Ph.D., William Kepler Whiteford Endowed Professor and Chair of chemical and petroleum engineering in the Swanson School of Engineering at Pitt. “And we do it synthetically.” The advantage of a synthetic approach rather than cell-based therapy, which is currently in clinical trials, is that the treatment logistics are much simpler. “Instead of isolating cells from a patient, growing them up in the lab, injecting them back in and hoping they find the right location, we’re packaging it all up in an engineered system that recruits these naturally occurring cells right to the transplanted graft,” said lead author James Fisher, M.D., Ph.D., a postdoctoral researcher in the Pitt School of Medicine. The microparticles work by releasing a native protein secreted by tumors, CCL22, which draws regulatory T cells (Treg cells) to the site of the graft, where they tag the foreign tissue as “self” so that it evades immune attack. Microparticle-treated animals maintained healthy grafts for as long as they were monitored — a little under a year, equivalent to about 30 human years. All it took was two shots to effect seemingly permanent change. In a companion paper published recently in PNAS, the researchers showed that these engineered microparticles can train the immune system of one strain of rat to accept a donor limb from a different strain. This new paper shows that the effects are specific to the intended donor. Skin grafts from a third strain were rapidly rejected. Today, transplant patients take daily doses of immunosuppressant drugs to avoid rejection, leaving them vulnerable to cancer, diabetes, infectious diseases and a host of other ailments that come along with a weakened immune system. “These drugs hammer the immune system into submission so it can’t attack the transplanted organ, but then it can’t protect the body either,” said coauthor Stephen Balmert, Ph.D., a postdoctoral researcher in the Pitt School of Medicine. “We’re trying to teach the immune system to tolerate the limb, so that a transplant recipient can remain immunocompetent.” The risks of lifelong immunosuppression are particularly problematic when the transplant isn’t a life-saving procedure. Doctors and patients have to consider whether the benefits outweigh the risks. “The ability to induce transplant tolerance while avoiding systemic immunosuppression, as demonstrated in these innovative studies, is especially important in the context of vascularized composite transplantation where patients receive quality-of-life transplants, such as those of hands or face,” said coauthor Angus Thomson, Ph.D., professor of surgery and immunology in the Thomas E. Starzl Transplantation Institute at Pitt. Additional authors on the study include Wensheng Zhang, Ph.D., Ali Aral, M.D., Abhinav Acharya, Ph.D., Yalcin Kulahci, M.D., Jingjing Li, M.D., Heth Turnquist, Ph.D., Mario Solari, M.D., all of Pitt; and Vijay Gorantla, M.D., Ph.D., of the Wake Forest School of Medicine. This research was supported by the National Institute of Allergy and Infectious Diseases (R01-AI118777 U19-AI131453, R01-HL122489, T32-AI074490), National Institute of Dental and Craniofacial Medicine (R01-DE021058), the Department of Defense (W81XWH-15-2-0027 and W81XWH-15-1-0244), The Camille & Henry Dreyfus Foundation and the National Cancer Institute (T32-CA175294).
Author: Erin Hare, Ph.D., Manager, Science Writing
Mar
10
2020

Learn more about Pitt's planning and response to COVID-19

Bioengineering, Chemical & Petroleum, Civil & Environmental, Electrical & Computer, Industrial, MEMS, Diversity, Student Profiles, Office of Development & Alumni Affairs

Please visit and bookmark the University of Pittsburgh COVID-19 site for the most up-to-date information and a full list of resources. From the University Times: As the coronavirus COVID-19 continues to spread around the world, Pitt is remaining diligent with addressing related issues as the pop up. For an overall look at updates from Pitt, go to emergency.pitt.edu. On Saturday, Provost Ann Cudd issued a statement about how to support faculty and staff who have committed to attending professional conferences this semester and choose not to attend due to the COVID-19 outbreak. The University will grant an exception for travel booked through May 31 and reimburse any out-of-pocket expenses incurred by those who decide to cancel travel. The administration will reassess this deadline date as COVID-19 evolves and may extend the deadline as conditions evolve. For more updates from the provost, go to provost.pitt.edu. The provost and the University Center for Teaching and Learning is encouraging faculty to be prepared if remote learning situations become required. The center has set up a page detailing the basics of providing instructional continuity. The page will be updated regularly. Find information about remote learning and more at teaching.pitt.edu/instructional-continuity. All business units and responsibilities centers also are being asked to work on how to handle mass absenteeism and/or the need for as many people as possible to work at home.

Feb

Feb
26
2020

Associate or Full Professor, Tenure Stream

Chemical & Petroleum, Open Positions

We seek one exceptional tenured candidate for a position at associate or full professor level. Our department is re-establishing an ABET-accredited BS degree program in PetE to complement our MS in PetE, and the applicant is expected to provide leadership in the development of the undergraduate curriculum and internship/coop program.  Promising academic candidates must have a track record of leadership in Petroleum Engineering research and contributions to teaching Petroleum Engineering courses at the undergraduate or graduate levels. We also welcome industrial candidates with at least five years of experience reflected in an extensive research and presentation record, along with university-level instructional experience. All candidates, whether from academia or industry, must have a PhD in science or engineering and at least one degree (BS, MS or PhD) in Petroleum Engineering. Candidates from groups traditionally underrepresented in engineering are strongly encouraged to apply. Our department has internationally recognized programs in Energy and Sustainability, Catalysis and Reaction Engineering, Materials, Multi-Scale Modeling, and Biomedical Engineering. Active collaborations exist with several adjacent centers, including the U.S. DOE National Energy Technology Laboratory, the University of Pittsburgh Center for Simulation and Modeling, the Center for Energy, the Petersen Institute for Nanoscience and Engineering, the Mascaro Center for Sustainable Innovation, the University of Pittsburgh Medical Center, and the McGowan Institute for Regenerative Medicine.  Our department has a strategic alliance with Lubrizol Corporation that includes educational and research components. The candidate is expected to lead a vibrant research program (funded by federal sources such as NSF, DOE and NETL, state agencies, industry partners, ACS PRF, etc.). The successful applicant will be expected to organize and lead large group proposals and to develop a strong relationship with the NETL facilities in Pittsburgh and Morgantown and with regional gas and oil producing companies. The candidate must also be committed to high quality teaching for a diverse student body and to assisting our department in enhancing diversity. To apply, please submit via Interfolio a detailed CV, names of four references, research plans/vision (5 - 10 pages), teaching plans/vision (2 - 4 pages), and service plans/vision (2 - 4 pages related to professional service to the department, university and scientific community).  Applications will only be accepted via submission through the following Interfolio link: http://apply.interfolio.com/73466. To ensure full consideration, applications must be received by May 1, 2020. Please address any inquiries (but not applications) to Dr. Robert Enick via che@pitt.edu. Please put “2020 PetE position” in the subject line. The University of Pittsburgh is an EEO/AA/M/F/Vet/Disabled employer.

Pitt PetE Search
Feb
20
2020

Shining a New Light on Biomimetic Materials

Chemical & Petroleum

PITTSBURGH (February 24, 2020) … Advances in biomimicry – creating biological responses within non-biological substances – will enable synthetic materials to behave in ways that were typically only found in Nature. Light provides an especially effective tool for triggering life-like, dynamic responses within a range of materials. The problem, however, is that the applied light is typically dispersed throughout the sample and thus, it is difficult to localize the bio-inspired behavior to the desired, specific portions of the material. A convergence of optical, chemical and materials sciences, however, has yielded a novel way to utilize light to control the local dynamic behavior within a material. In a general sense, the illuminated material mimics a vital biological behavior: the ability of the iris and pupil in the eye to dynamically respond to the incoming light. Furthermore, once the light enters the sample, the material itself modifies the behavior of the light, trapping it within regions of the sample. The latest research from the University of Pittsburgh’s Swanson School of Engineering, Harvard University and McMaster University, reveals a hydrogel that can respond to optical stimuli and modify the stimuli in response. The group’s findings of this opto-chemo-mechanical transduction were published this month in the Proceedings of the National Academy of Sciences (DOI: 10.1073/pnas.1902872117). The Pitt authors include Anna C. Balazs, Distinguished Professor of Chemical and Petroleum Engineering and John A. Swanson Chair of Engineering; and Victor V. Yashin, Visiting Research Assistant Professor. Other members include Joanna Aizenberg, Amos Meeks (co-first author) and Anna V. Shneidman, Wyss Institute for Biologically Inspired Engineering and Harvard John A. Paulson School of Engineering and Applied Sciences; Ankita Shastri, Harvard Department of Chemistry and Chemical Biology; and Fariha Mahmood, Derek Morim (co-first author), Kalaichelvi Saravanamuttu and Andy Tran, McMaster University, Ontario, Canada. “Until only a decade or so ago, the preferred state for materials was static. If you built something, the preference was that a material be predictable and unchanging,” Dr. Balazs explained. “However, as technology evolves, we are thinking about materials in new ways and how we can exploit their dynamic properties to make them responsive to external stimuli. “For example, rather than programming a computer to make a device perform a function, how can we combine chemistry, optics and materials to mimic biological processes without the need for hard-wired processors and complex algorithms?”The findings continue Dr. Balazs’ research with spiropyran (SP)-functionalized hydrogels and the material’s photo-sensitive chromophores. Although the SP gel resembles gelatin, it is distinctive in its ability to contain beams of light and not disperse them, similar to the way fiber optics passively control light for communication. However, unlike a simple polymer, the water-filled hydrogel reacts to the light and can “trap” the photons within its molecular structure. “The chromophore in the hydrogel plays an important role,” she explains. “In the absence of light, the gel is swollen and relaxed. But when exposed to light from a laser beam about the width of a human hair, it changes it structure, shrinks and becomes hydrophobic. This increases the polymer density and changes the hydrogel’s index of refraction and traps the light within regions that are denser than others. When the laser is removed from the source, the gel returns to its normal state. The ability of the light to affect the gel and the gel in turn to affect the propagating light creates a beautiful feedback loop that is unique in synthetic materials.” Most surprisingly, the group found that the introduction of a second, parallel beam of light creates a type of communication within the hydrogel. One of the self-trapped beams not only controls a second beam, but also the control can happen with a significant distance between the two, thanks to the response of the hydrogel medium. Dr. Yashin notes that this type of control is now possible because of the evolution of materials, not because of advances in laser technology.“The first observation of self-trapping of light occurred in 1964, but with very large, powerful lasers in controlled conditions,” he said. “We can now more easily achieve these behaviors in ambient environments with far less energy, and thus greatly expand the potential use for non-linear optics in applications.”The group believes that opto-chemo-mechanical responses present a potential sandbox for exploration into soft robotics, optical computing and adaptive optics. “There are few materials designed with a built-in feedback loop,” Dr. Balazs said. “The simplicity of the responses provides an exciting way to mimic biological processes such as movement and communication, and open new pathways toward creating devices that aren’t reliant on human control.”This research was supported in part by the US Army Research Office under Award W911NF-17-1-0351 and by the Natural Sciences and Engineering Research Council, Canadian Foundation for Innovation. ### Schematic representation of optical self-trapping within SP-functionalized hydrogels with two remote beams; each beam is switched on and off to control the interaction. (Aizenberg/Saravanamuttu Lab. Proceedings of the National Academy of Sciences Feb 2020, 201902872; DOI: 10.1073/pnas.1902872117) SP-modified hydrogels. (A) Photoisomerization scheme of chromophore substituents from the protonated merocyanine (MCH+, Left) to SP (Right) forms in the methylenebis(acrylamide) cross-linked p(AAm-co-AAc) hydrogel. (B) Photographs of chromophore-containing p(AAm-co-AAc) hydrogel monoliths employed in experiments. (C) UV-visible absorbance spectra demonstrating reversible isomerization of MCH+ (absorption λmax = 420 nm) to SP (λmax = 320 nm) in solution. (D) Experimental setup (Top) to probe laser self-trapping due to photoinduced local contraction of the hydrogel, schematically depicted on the Bottom (see also Movie S1). A laser beam is focused onto the entrance face of the hydrogel while its exit face is imaged onto a CCD camera. (Aizenberg/Saravanamuttu Lab. Proceedings of the National Academy of Sciences Feb 2020, 201902872; DOI: 10.1073/pnas.1902872117)

Feb
12
2020

Pitt ChemE Professor Awarded Sloan Research Fellowship

Chemical & Petroleum

PITTSBURGH (Feb. 12, 2020) — Susan Fullerton, PhD, Bicentennial Board of Visitors Faculty Fellow and assistant professor of chemical engineering at the University of Pittsburgh’s Swanson School of Engineering, has been selected as a 2020 Alfred P. Sloan Research Fellow in Chemistry. The highly competitive award is given to outstanding early-career scientists from the U.S. and Canada. The two-year, $75,000 fellowship recognizes researchers’ unique potential to make substantial contributions to their field. Fullerton’s fellowship will further her research on two-dimensional materials for next-generation electronics.  These two-dimensional materials can be thought of as a piece of paper – if the paper were only a single molecule thick.  Fullerton’s group uses ions to control charge in these molecularly thin sheets for application in memory and logic.  Fullerton is the 12th Pitt faculty member to receive the Chemistry Fellowship since 1970 “This Fellowship speaks to Susan’s groundbreaking research in electronics, and how she’s used her training in the chemical sciences to impact this field; it’s an honor that is well-deserved,” says Steven Little, PhD, William Kepler Whiteford Professor and Department Chair of Chemical and Petroleum Engineering. The Sloan Research Fellowships are awarded annually to 126 researchers in the areas of chemistry, computation and evolutionary molecular biology, computer science, economics, mathematics, neuroscience, ocean sciences and physics. The Alfred P. Sloan Foundation, founded in 1934 and named for the former president and CEO of the General Motors Corporation, makes grants to support research and education in science, technology, engineering, mathematics and economics.
Maggie Pavlick

Jan

Jan
30
2020

Stellar Student Researchers

Chemical & Petroleum, MEMS, Student Profiles

PITTSBURGH (Jan. 30, 2020) — Most researchers can take certain things, like gravity, for granted. That is not the case for the two groups of students from the University of Pittsburgh who will be sending their experiments to fly aboard the International Space Station (ISS). Thanks to a Pitt SEED Grant, two groups of students from the Swanson School of Engineering and the School of Pharmacy have the opportunity to send experiments into space to study the effects of microgravity on their subjects through Pitt’s participation in the Student Spaceflight Experiments Program (SSEP). “This is an incredible opportunity for our students to participate in one of humankind’s most impressive ventures: spaceflight,” says David Vorp, PhD, associate dean for research, John A. Swanson Professor of Bioengineering at the Swanson School of Engineering, and co-principle investigator of the SSEP at Pitt. “We’re impressed that our interdisciplinary student teams designed not one, but two experiments accepted to this highly selective program.” Vorp is joined as co-principle investigator by Ravi Patel, PharmD, and Kerry Empey, PharmD, PhD, from the School of Pharmacy. John Donehoo, RPh, clinical pharmacist at UPMC, joins the project as a select collaborator. The SSEP student teams are given a 10-inch silicone tube in which to perform their experiments, which they can segment with clamps to keep elements of the experiment separate until they reach the ISS. Scientists aboard the ISS can only be given simple instructions, like removing the clamps and shaking the tube, making experiment design complicated. Finding a Silver Lining One interdisciplinary group of students is studying how silver nanoparticles effect the immune response of Daphnia Magna, a species of water flea that can show an immune response. Researchers Samantha Bailey, PharmD candidate; Jordan Butko, sophomore studying mechanical engineering; Amanda Carbone, junior studying chemical engineering; and Prerna Dodeja, MS student in the School of Pharmacy, will look at genetic markers in the organism that indicate its immune response once it returns to earth. “Researchers have previously tested immune response in Daphnia Magna, but no one has looked at it with regard to nanoparticles yet,” says Carbone. “We’re excited that we get to build on the work that others have done and explore new territory.” Silver nanoparticles are also sometimes found in antibacterial products and have been associated with significant toxicity in the liver and brain. While these nanoparticles aren’t so problematic on Earth, where gravity keeps them down, they could be more harmful in microgravity, where they can be accidentally inhaled or ingested. The study will investigate the effect of these silver nanoparticles on Daphnia Magna’s immune system in microgravity, comparing it to Daphnia Magna’s response on Earth, to shed light on if and how astronauts’ immune systems function differently in space. Aerospace Aluminum Marissa Defallo, a junior studying mechanical engineering, and Nikolas Vostal, a junior studying materials science, make up the second group of student researchers. They will send a sample of 3D-printed aluminum with unique topography, combined with an oxidizer like a saltwater solution, to the ISS to study corrosion in microgravity. Aluminum is frequently used in the aerospace industry, including on the ISS, and the experiment will provide insights into how the material corrodes in space, information that could inform future corrosion-resistant materials. “At my co-op with American Airlines, we had to do corrosion training, and that evolved into the idea for this project. When satellites are in orbit, they are still in Earth’s atmosphere, and there’s oxygen present to cause corrosion,” says Defallo.  “I’ve always had a passion for space and want to work for a company like SpaceX someday, so this kind of experience is an invaluable opportunity to have.” Though the launch date is not yet officially scheduled, the SSEP teams say they may be able to send the experiments into space in June 2020.
Maggie Pavlick
Jan
24
2020

“I want to pursue a degree like this when I go to college.”

Chemical & Petroleum

PITTSBURGH (Jan. 24, 2019) — The Outreach Projects for ChE 500 “Systems Engineering I: Dynamics and Modelling,” a Pillars Curriculum course for senior students in the Chemical and Petroleum Engineering Department at the University of Pittsburgh’s Swanson School of Engineering, is an integral part of the course. The same groups that work out homework assignments, other projects, recitations or lab experiments are challenged with making a proposal for a community service where they address non-technical audiences and promote the interest in or appreciation for STEM careers. The project, meant to help the engineering students engage with their field in a new way, had a significant impact on their audiences. Eleven groups of Pitt students reached a total of 12 teachers and 443 students ranging from third-graders to college students. Students were entirely free to choose their topics, their partners, their audiences, their communication tools, their service and their goals. The basic structure for the project required a proposal presentation early in the term, the approval of the instructor before the actual presentation to the selected audience, and a final presentation to the class, complemented by a group report and individual self-assessment reports. The final grades factored in self-assessment, community feedback and instructor grading. “Learning to communicate well about science is an important part of being an engineer,” says Joaquin Rodriquez, PhD, assistant professor of Chemical and Petroleum Engineering and ChE 500 instructor. “An important part of this project is practicing communication skills that will serve them for their academic and professional careers.” Many of the groups focused on breaking down engineering concepts for non-engineering audiences in a way that was engaging and hands-on. For some, that meant providing teachers with materials they can use in the classroom to bring STEM concepts to life. One group prepared a presentation for fourth and fifth grade students at Howe Elementary School and Holiday Park Elementary School on how water is processed from natural sources and distributed to peoples’ homes. Another prepared a video and presentation about a chemical experiment, making a lava lamp, to third graders at Stewartsville Elementary School, and yet another prepared a lecture on forces, combined with a dynamic set of experiments to illustrate the different types of forces. Several other groups created websites with chemical engineering principles and fundamental information that teachers can use as a resource when presenting these concepts in the classroom. Other groups created in-person demonstrations designed to engage young audiences. One group prepared a background presentation and a set of three chemical reaction experiments—elephant tooth-paste, a vitamin C clock, and a Luminol demonstration—on stage at Freedom Area Middle School with about 100 sixth-graders in attendance. The students were invited to take part in the experiments, a call they answered with enthusiasm. The projects weren’t all geared toward a K-12 audience, though; others sought to reach non-engineering majors to show how engineering impacts everyone. One group prepared a video about the Haber-Bosch process and its dramatic impact on agriculture to sustain a growing world population. The video was presented at a meeting of the Pitt Muslim Students Association, a group with a diverse educational background. Another prepared a video with animations on the scientific principles behind the operation of microwave ovens to a class of non-STEM major students at Pitt. “Our students each found unique ways to engage with their audiences and make science exciting, enjoyable, and importantly, clear,” says Rodriguez. “They were strong ambassadors for the field of chemical engineering and STEM careers, and I’m proud of the impact our students have in our community.” The feedback provided by the students and teachers shows the great impact these outreach efforts had. In response to a group’s website detailing solar power and chemical engineers’ role in it, the instructor said, “The site provided a lot of useful information on how prevalent these forms of sustainable energy are becoming in the United States and around the world, which started several side conversations with my students about the importance of sustainable energy –which, I believe, is alone the marking of a huge success. To have tapped into the interests of teenagers to such a degree that they talk about renewable energy with interest is, truly, a remarkable feat.”
Maggie Pavlick
Jan
8
2020

2020 ChemE Faculty

Chemical & Petroleum, Open Positions

The Department of Chemical and Petroleum Engineering at the University of Pittsburgh invites applications for a tenure-track faculty position at the assistant professor rank. Successful candidates are expected to show exceptional potential to become leaders in their respective fields, and to contribute to teaching at the undergraduate and graduate levels. The Department has internationally recognized programs in Energy and Sustainability, Catalysis and Reaction Engineering, Materials, Multi-Scale Modeling, and Biomedical engineering. Active collaborations exist with several adjacent centers, including the University of Pittsburgh Center for Simulation and Modeling, the Petersen Institute for Nanoscience and Engineering, the Mascaro Center for Sustainable Innovation, The University of Pittsburgh Center for Energy, the University of Pittsburgh Medical Center, the McGowan Institute for Regenerative Medicine, and the U.S. DOE National Energy Technology Laboratory. The department also has a broad strategic alliance with the Lubrizol Corporation, a leading specialty chemicals company, with a particular focus on process intensification. We are seeking faculty who can contribute strategically to departmental strengths, but outstanding applicants in all areas will be considered. Applications will only be accepted via submission through the following Interfolio link: http://apply.interfolio.com/72527. To ensure full consideration, applications must be received by February 28, 2020. Please address any inquiries (but not applications) to che@pitt.edu. Candidates from groups traditionally underrepresented in engineering are strongly encouraged to apply. One of the major strategic goals of the university is to “Embrace Diversity and Inclusion”; therefore, the candidate should be committed to high-quality teaching and research for a diverse student body and to assisting our department in enhancing diversity in all forms. The University of Pittsburgh is an EEO/AA/M/F/Vet/Disabled employer.