Rakymzhan, A., Fukuda, M., Yoshida Kozai, T.D., & Vazquez, A.L. (2024). Parvalbumin interneuron activity induces slow cerebrovascular fluctuations in awake mice. bioRxiv, 5(06-24), 2024.06.15.599179.Cold Spring Harbor Laboratory. doi: 10.1101/2024.06.15.599179.
Ruff, C.F., Anaya, F.J., Dienel, S.J., Rakymzhan, A., Altamirano-Espinoza, A., Couey, J., Watson, A.M., Fish, K.N., Hooks, B.M., Rubio, M.E., Su, A., Ross, S.E., & Vazquez, A.L. (2022). Long-range inhibitory neurons mediate cortical neurovascular coupling. 2022.10.11.511811.Cold Spring Harbor Laboratory. doi: 10.1101/2022.10.11.511811.
Rakymzhan, A., Li, Y., Tang, P., & Wang, R.K. (2021). Differences in cerebral blood vasculature and flow in awake and anesthetized mouse cortex revealed by quantitative optical coherence tomography angiography. J Neurosci Methods, 353, 109094.Elsevier. doi: 10.1016/j.jneumeth.2021.109094.
Li, Y., Rakymzhan, A., Tang, P., & Wang, R.K. (2020). Procedure and protocols for optical imaging of cerebral blood flow and hemodynamics in awake mice. Biomed Opt Express, 11(6), 3288-3300.Optica Publishing Group. doi: 10.1364/BOE.394649.
Rakymzhan, A., Li, Y., Tang, P., & Wang, R.K. (2020). Optical microangiography reveals temporal and depth-resolved hemodynamic change in mouse barrel cortex during whisker stimulation. J Biomed Opt, 25(9), 096005. doi: 10.1117/1.JBO.25.9.096005.
Tang, P., Li, Y., Rakymzhan, A., Xie, Z., & Wang, R.K. (2020). Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography. Biomed Opt Express, 11(2), 699-710.Optica Publishing Group. doi: 10.1364/BOE.381332.
Li, Y., Tang, P., Song, S., Rakymzhan, A., & Wang, R.K. (2019). Electrically tunable lens integrated with optical coherence tomography angiography for cerebral blood flow imaging in deep cortical layers in mice. Opt Lett, 44(20), 5037-5040.Optica Publishing Group. doi: 10.1364/OL.44.005037.
Rakymzhan, A., Yakupov, T., Yelemessova, Z., Bukasov, R., Yakovlev, V.V., & Utegulov, Z.N. (2019). Time-resolved Assessment of Drying Plants by Brillouin and Raman Spectroscopies. J Raman Spectrosc, 50(12), 1881-1889.Wiley. doi: 10.1002/jrs.5742.
Rakymzhan, A., Yakupov, T., Yelemessova, Z., Bukasov, R., Yakovlev, V.V., & Utegulov, Z.N. (2017). Monitoring of vegetation drying by Brillouin and Raman spectroscopies. In Kim, M.S., Chao, K., Chin, B.A., & Cho, B.K. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 10217, (p. 102170c-102170c-6).SPIE, the international society for optics and photonics. doi: 10.1117/12.2263535.