headshot of Adiya Rakymzhan

Adiya Rakymzhan

Bioengineering Department

overview

Adiya Rakymzhan earned her B.S. in Physics from Nazarbayev University in Kazakhstan before pursuing an M.S. in Bioengineering at the University of Washington (UW). At UW, she worked in Ricky Wang's lab, adapting optical coherence tomography (OCT) for cerebral blood imaging in preclinical models. She then completed her Ph.D. in Bioengineering at the University of Pittsburgh (Pitt), focusing on Neural Engineering. Under the mentorship of Prof. Alberto Vazquez at the Neuroimaging Lab, she investigated how inhibitory neurons shape cortical networks and cerebrovascular dynamics in both healthy and Alzheimer’s disease conditions. Her research was supported by an American Heart Association fellowship. Now a Postdoctoral Associate at MIT, Adiya works in Prof. Laura Lewis’s lab, integrating fNIRS and fMRI to study how subcortical neuromodulatory activity influences neurovascular coupling across the brain.

about

Rakymzhan, A., Fukuda, M., Yoshida Kozai, T.D., & Vazquez, A.L. (2024). Parvalbumin interneuron activity induces slow cerebrovascular fluctuations in awake mice. bioRxiv, 5(06-24), 2024.06.15.599179.Cold Spring Harbor Laboratory. doi: 10.1101/2024.06.15.599179.

Ruff, C.F., Anaya, F.J., Dienel, S.J., Rakymzhan, A., Altamirano-Espinoza, A., Couey, J., Watson, A.M., Fish, K.N., Hooks, B.M., Rubio, M.E., Su, A., Ross, S.E., & Vazquez, A.L. (2022). Long-range inhibitory neurons mediate cortical neurovascular coupling. 2022.10.11.511811.Cold Spring Harbor Laboratory. doi: 10.1101/2022.10.11.511811.

Rakymzhan, A., Li, Y., Tang, P., & Wang, R.K. (2021). Differences in cerebral blood vasculature and flow in awake and anesthetized mouse cortex revealed by quantitative optical coherence tomography angiography. J Neurosci Methods, 353, 109094.Elsevier. doi: 10.1016/j.jneumeth.2021.109094.

Li, Y., Rakymzhan, A., Tang, P., & Wang, R.K. (2020). Procedure and protocols for optical imaging of cerebral blood flow and hemodynamics in awake mice. Biomed Opt Express, 11(6), 3288-3300.Optica Publishing Group. doi: 10.1364/BOE.394649.

Rakymzhan, A., Li, Y., Tang, P., & Wang, R.K. (2020). Optical microangiography reveals temporal and depth-resolved hemodynamic change in mouse barrel cortex during whisker stimulation. J Biomed Opt, 25(9), 096005. doi: 10.1117/1.JBO.25.9.096005.

Tang, P., Li, Y., Rakymzhan, A., Xie, Z., & Wang, R.K. (2020). Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography. Biomed Opt Express, 11(2), 699-710.Optica Publishing Group. doi: 10.1364/BOE.381332.

Li, Y., Tang, P., Song, S., Rakymzhan, A., & Wang, R.K. (2019). Electrically tunable lens integrated with optical coherence tomography angiography for cerebral blood flow imaging in deep cortical layers in mice. Opt Lett, 44(20), 5037-5040.Optica Publishing Group. doi: 10.1364/OL.44.005037.

Rakymzhan, A., Yakupov, T., Yelemessova, Z., Bukasov, R., Yakovlev, V.V., & Utegulov, Z.N. (2019). Time-resolved Assessment of Drying Plants by Brillouin and Raman Spectroscopies. J Raman Spectrosc, 50(12), 1881-1889.Wiley. doi: 10.1002/jrs.5742.

Rakymzhan, A., Yakupov, T., Yelemessova, Z., Bukasov, R., Yakovlev, V.V., & Utegulov, Z.N. (2017). Monitoring of vegetation drying by Brillouin and Raman spectroscopies. In Kim, M.S., Chao, K., Chin, B.A., & Cho, B.K. (Eds.). In Proceedings of SPIE--the International Society for Optical Engineering, 10217, (p. 102170c-102170c-6).SPIE, the international society for optics and photonics. doi: 10.1117/12.2263535.