Pitt | Swanson Engineering

The Department of Bioengineering combines hands-on experience with the solid fundamentals that students need to advance themselves in research, medicine, and industry. The Department has a long-standing and unique relationship with the University of Pittsburgh Medical Center and other academic departments at the University of Pittsburgh as well as neighboring Carnegie Mellon University. Our faculty are shared with these organizations, offering our graduate and undergraduate students access to state-of-the-art facilities and a wide array of research opportunities. We currently have 187 graduate students who are advised by some 100 different faculty advisers, pursuing graduate research across 17 Departments and five Schools. Our undergraduate class-size of approximately 50 students per year ensures close student-faculty interactions in the classroom and the laboratory.

The main engineering building is located next to the Medical Center in Oakland, an elegant university neighborhood with museums, parks, and great restaurants. Beautiful new facilities have also been built, a short shuttle ride from the main campus, along the Monongahela River, replacing the steel mills that once were there. Our department is growing rapidly, both in numbers of students and faculty, and in the funding and diversity of our research. The Pittsburgh bioengineering community is a vibrant and stimulating alliance of diverse components for which our department forms an essential and central connection.

May
4
2021

Taking Charge: How to Use a Battery to Prevent Workplace Injury

Bioengineering

Workplace injuries and deaths have an enormous economic impact in the United States, costing society billions of dollars annually. According to the National Safety Council, work injury costs totaled $170.8 billion in 2018. One of the top causes is slip-and-fall injuries – an accident that can be mitigated in a variety of ways, such as proper footwear. The University of Pittsburgh’s Kurt Beschorner leads research to predict the risk of a slip-and-fall injury based on shoe tread. They have examined the impact of worn shoes on slipping and are now working with the National Occupational Research Agenda (NORA) Traumatic Injury Prevention Council to develop safety signage for hospitals and the restaurant industry. “Our research focuses on understanding the underlying causes of slippery shoes, and we have been working to identify the tread thresholds where shoes become unsafe,” said Beschorner, associate professor of bioengineering at Pitt and a member of the Human Movement & Balance Laboratory. “Slip-resistant shoes are designed with train channels that help drain fluid, but as shoes wear down, the channels disappear and become ineffective. This can create a slipping effect similar to tires hydroplaning on a wet road.” Unlike tire tread, which focuses on depth, Beschorner and his team found that the risk of slipping depends on the size of the worn patch of shoe. They developed a test that uses a universal device, a battery, to determine when it might be time to replace your footwear. “The strength of our test is in its simplicity,” Beschorner said. “Use the base of a AA battery to measure the worn region of your slip-resistant shoe. When the worn region becomes larger than the base of a battery, the shoe should be replaced. As the worn patch grows larger, there is a steady decline in function, and the base of the battery is the size where it becomes meaningful.” The team considered several common items – such as pens or coins – for the test, but most objects varied in size from brand to brand and country to country. Batteries, however, are globally universal in size. Beschorner suggests monitoring your shoes and replacing them before the worn patch becomes too large. His research also suggests that individuals will wear through their shoes at different rates. “The rate of wear was predicted by the walking style of the individual. Particularly, participants who utilized more friction during dry walking wore through shoes at a faster rate,” he said. “Thus, individuals may require different replacement schedules based on their unique walking style.” In addition to monitoring shoe wear, Beschorner also advises workers to examine the tread before buying a new pair. “Certain footwear comes with large tread features, which should be avoided since these treads mimic the worn patch that can lead to slips,” he explained. Check out the NORA Traumatic Injury Prevention Council’s posters for the food service and health care industries. “Common sense research meets the real world,” said Patrick Kubis, president of SR Max Slip Resistant Shoes. “We are already sharing this research with customers through educational posters and shoe box inserts. With one simple picture, our customers visualize the solution and the importance of replacing worn out shoes.” You can find more information on the HMBL website. # # #

May
4
2021

Bioengineering Introduces Two New Faculty Members in 2021

Bioengineering

The University of Pittsburgh Department of Bioengineering welcomed two new assistant professors in 2021. Katrina Knight, an alumna of the department, will advance the work she started as a graduate student at the Center for Interdisciplinary Research in Female Pelvic Health. Helen Schwerdt will build a research program committed to learning more about the brain, developing and integrating tools to examine and manipulate neural circuits. “Dr. Knight is a rising star in the bioengineering community, and her research in pelvic floor disorders aligns well with ongoing work in the women’s health arena within and outside of the department,” said Sanjeev Shroff, Distinguished Professor and Gerald E. McGinnis Chair of Bioengineering at Pitt’s Swanson School of Engineering. “She is an engaged citizen and an excellent science ambassador, with a deep commitment to promoting diversity in the STEM field and enhancing access to STEM education for underprivileged and underserved communities. “Dr. Schwerdt is another superstar who has applied her electrical engineering background to develop novel neural interfaces and help us better understand how the brain works under normal and pathological conditions,” he said. “She will be a major asset to our research efforts in the neural engineering area, and her work nicely complements ongoing research within our department and at the collaborative Brain Institute. I’m thrilled to have them both on our team.” Katrina Knight (PhD, Bioengineering, University of Pittsburgh) Knight’s research focuses on the pathogenesis and treatment of pelvic organ prolapse (POP), a common condition where the organs in the pelvis push against the vagina, creating a “bulge” that can extend outside of the body. Despite the fact that this condition affects nearly one-third of all women, repair surgeries using synthetic mesh often result in complications. Knight’s work explores the biomechanical mechanisms underlying the failure of synthetic meshes in an effort to develop improved mesh materials and design. “Current prolapse meshes are simply hernia meshes repurposed for the repair of pelvic organ prolapse,” she explained. “My research aims to develop a novel device that is specifically tailored for prolapse repair and one that is based on scientific evidence. “Such a device will improve the lives of millions of women around the world who are impacted with this condition.” Knight joins the Department of Bioengineering from a postdoctoral associate position in the Department of Obstetrics, Gynecology & Reproductive Sciences and the Magee-Women’s Research Institute and Foundation Postdoctoral Fellowship Program. Her research career has so far produced 13 peer-reviewed journal publications, 2 book chapters, and 24 presentations at national and international conferences in the field of urogynecology. She also currently serves as a co-founder and chief engineering officer of Your Village Is My Village, Incorporated, a 501c3 non-profit organization that aims to positively transform communities through mentoring and the education of at-promise youths. Helen Schwerdt (PhD, Electrical Engineering, Arizona State University) Schwerdt’s research involves building and applying novel, multi-modal neural interfaces to explore how the brain works, understand its pathological mechanisms, and improve the treatment of debilitating neurological disorders. She will focus on monitoring and manipulating neural activity from the level of individual cells and molecules – such as dopamine and other neurotransmitters – to the connections they shape between cells across the brain. Her group will examine how all of this activity collectively drives adaptive behavior. She will also work to improve neural implant device longevity for lifetime diagnostic and therapeutic use. “Direct interfacing and communication with the human brain requires implantable devices that work over a lifetime without degradation,” she said. “Adding the ability to probe multiple forms of neural activity, outside of the traditional electrical neural signals, would enable a more directed approach to intervention as well as open up new ways to study the brain. “My goal is to develop a new class of multi-modal neural interfaces capable of monitoring and perturbing chemical and electrical forms of neural activity in a longitudinally stable manner. We will use these devices to study brain function and dysfunction and improve treatment for a wide range of neurological and neuropsychiatric disorders.” Prior to her appointment at Pitt, Schwerdt was a postdoctoral associate and research scientist at the Massachusetts Institute of Technology. She has 12 peer-reviewed journal publications, 2 book chapters, and 16 presentations and/or abstracts at national and international conferences. In 2018, she received an NIH/NINDS Pathway to Independence Award for a project titled “Mapping neurochemical activity of the basal ganglia in pathological behaviors.” Two years later, she received the NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation to examine the role of the basal ganglia circuits and the underlying dopamine molecular signaling that become dysregulated in major mood disorders. # # #

Apr
28
2021

William Federspiel Receives the 2020-2021 Marlin Mickle Outstanding Innovator Award

Bioengineering, Chemical & Petroleum

PITTSBURGH (April 28, 2021) ... The current COVID-19 pandemic has not only shaken the healthcare industry but also delivered more than a year of social and economic disruption across the globe. During this time, innovators at the University of Pittsburgh quickly adapted their research to meet new safety standards and managed to tackle the effects of the pandemic. On April 22, the Innovation Institute recognized Pitt faculty, students and staff who thrived, despite these unprecedented circumstances, at its 2020-2021 Celebration of Innovation. William Federspiel, John A. Swanson Professor of Bioengineering, received the Marlin Mickle Outstanding Innovator Award for his consistent dedication to achieving societal impact through commercial application of his research. This prestigious award honors Professor Mickle, a Pitt innovator who holds the University record for invention disclosures filed, patents issued, and startups formed. “I am honored and thankful to be this year’s recipient of the Marlin Mickle Innovation Award. I’m also humbled knowing many of the past recipients of this award,” said Federspiel, who also holds appointments in chemical engineering, the McGowan Institute for Regenerative Medicine, critical care medicine, and the Clinical Translation Institute. “This award has personal meaning for me. I always knew Marlin to be a scholar and an innovator, but through conversation, I recognized that he was the ultimate gentleman and extremely humble.” Federspiel directs the Medical Devices Laboratory wherein clinically significant devices are developed for the treatment of pulmonary and cardiovascular ailments by utilizing engineering principles of fluid flow and mass transfer. He is also a co-founder of ALung Technologies, a Pittsburgh-based medical device company, at which he now serves as head of the scientific advisory board. Among Federspiel’s innovations is the Hemolung® Respiratory Assist System (RAS), a minimally invasive device that does the work of the lungs by removing carbon dioxide from the blood. During the coronavirus pandemic, the device received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration as a treatment for COVID-19. “It is an amazingly rewarding experience to develop technologies that help save lives,” Federspiel said. “[ALung Technologies] did an amazing job creating the Hemolung RAS system that was seeded in my laboratory. “Last year we experienced the beginning of a once in a lifetime pandemic. While I was already proud that the Hemolung RAS device was in FDA clinical trials for approval, I was ecstatic when I learned the company sought and obtained EUA authorization from the FDA to treat severe COVID-19 patients,” he added. “Obviously, these are circumstances I would have never envisioned 25 years ago when I joined Pitt. It came from the hard work of many individuals both at the University and the company.” Click here to watch Dr. Federspiel’s acceptance speech. To date, 97 COVID-19 patients have been treated using the Hemolung® RAS device, and the company has experienced increased demand as a result of the pandemic. Federspiel has developed additional artificial lung platforms that combine fiber technology with cellular and biomolecular components to create biohybrid artificial lung tissue and bioactive hollow fibers. Some of his other innovations include a membrane and particle-based blood purification devices for use in critical care settings; improved transport models for drug delivery from nanoparticles and microparticles; and oxygen depletion devices for blood storage systems that will extend the shelf life of red cell units and deliver red cells of higher efficacy and lower toxicity for transfusion therapy. “Although publication is one of the core activities of academia, the ultimate goal of bioengineering research is to make a real-world impact, e.g., improve health care. Bill has dedicated his career to translating novel research findings into improved treatments of cardiopulmonary diseases – this is perhaps his highest contribution,” said Sanjeev Shroff, Distinguished Professor and Gerald E. McGinnis Chair of Bioengineering. During his time at Pitt, Federspiel has submitted 32 invention disclosures, been issued 14 patents, and has had his work licensed 11 times. He is an elected Fellow of several prestigious professional organizations such as the National Academy of Inventors, the Biomedical Engineering Society, the American Institute for Medical and Biological Engineering, and the American Society for Artificial Internal Organs. In 2019, he received the Carnegie Science Award for Life Sciences. # # #

Apr
21
2021

Sarah Hemler Clinches First Place at Pitt’s Three Minute Thesis Competition

Bioengineering, Student Profiles

Each year, graduate students from the University of Pittsburgh participate in the University of Queensland’s Three Minute Thesis (3MT®) Competition to challenge their research communication skills. The event invites higher degree students to effectively explain their work in three minutes to a non-specialist audience. Sarah Hemler, a bioengineering PhD candidate in the Swanson School of Engineering’s Human Movement and Balance Laboratory, was awarded first place in Pitt’s 2021 competition. She used the platform to discuss the assessment and mechanics of shoe tread wear. “I think research or any work we do is only as potent as its communication,” she said. “In the lab, we know the details of our work more than anyone else. It’s in relaying this information with accuracy, tact, and attention to the audience that the information is disseminated effectively. Even the best interventions require strategic communication around their importance and validity to reach the intended audiences.” Her dissertation work includes monitoring shoe traction performance and wear, and developing footwear replacement strategies to prevent slips and falls. She designed and prototyped a portable shoe scanner, which could ultimately help reduce the billions of dollars spent on medical claims due to workplace injuries. “Part of my research involves user-centered design which understands how to assess and incorporate user needs into the product design process for optimal efficiency,” Hemler added. “I think effective communication involves applying some user-centered design techniques; we need to know what is useful, usable, and desirable for the audience in order for information to be remembered.” “Sarah has worked hard to refine the skill of communicating in a concise and understandable way,” said Kurt Beschorner, associate professor of bioengineering and Hemler’s research advisor. “This skill can be especially challenging when communicating highly technical research. I was so pleased that her efforts and talents were recognized in this competition.” Swanson School students have continually placed as finalists or won the top prize in this competition since 2018.

Apr
9
2021

Controlled Release Society to Present Pitt’s Steven Little with Distinguished Service Award

Bioengineering, Chemical & Petroleum

PITTSBURGH (April 9, 2021) … The Controlled Release Society (CRS) has announced that University of Pittsburgh Professor Steven R. Little will receive its Distinguished Service Award at its virtual annual meeting this July 25-29. Little, the William Kepler Whiteford Endowed Professor and Chair of the Department of Chemical and Petroleum Engineering at Pitt’s Swanson School of Engineering, is internationally recognized for his research in drug delivery systems that mimic the body’s own mechanisms of healing and resolving inflammation.This is Little’s third honor from CRS; in 2018 he received the society’s Young Investigator Award, and in 2020 was elected to its College of Fellows for “outstanding and sustained contributions to the field of delivery science and technology over a minimum of ten years.”“Dr. Little's leadership of the focus groups of the Controlled Release Society has been transformational for the society as a whole,” said nominator Justin Hanes, the Lewis J. Ort Professor of Ophthalmology at the Johns Hopkins University School of Medicine. “I have never seen the young rising superstars of our field so engaged in the CRS, and their engagement is key to the long-term success of this remarkable scientific society. Dr. Little has also been a highly valued member of the CRS board of directors.  He is a visionary and a natural leader. We are so grateful to him.”Rather than traditional drug treatments that are distributed throughout the entire body, Little’s controlled release research focuses on time-released microcapsules that target specific cells on site. In 2020, Little published a groundbreaking discovery of a new immunotherapy system that mimics how cancer cells invade the human immune system and thereby reduces the risk of transplant rejection. He has also made advancements to the fundamentals of delivery science with predictive models enabling rational design of drug delivery systems, leading to the founding of Qrono Inc., a specialty pharma company in Pittsburgh.“The CRS is a tremendous organization, and I am extremely humbled by this recognition. A large number of people sacrificed so much of their time to achieve the positive changes that this award is recognizing. I am very confident that I speak for all of these people when I say how rewarding it is for all of us to see the next generation of scientists and engineers being recognized for what they do and having a way to exercise their own leadership in this world-class organization.”More About Dr. LittleDr. Steven Little is a William Kepler Whiteford Endowed Professor of Chemical and Petroleum Engineering, Bioengineering, Pharmaceutical Sciences, Immunology, Ophthalmology, and the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. He received his PhD in Chemical Engineering from MIT in 2005, with his thesis winning the American Association for Advancement of Science's Excellence in Research Award. Researchers in Dr. Little’s Lab focus upon therapies that are biomimetic and replicate the biological function and interactions of living entities using synthetic systems. Areas of study include bioengineering, chemistry, chemical engineering, ophthalmology, and immunology, and the health issues addressed include autoimmune disease, battlefield wounds, cancer, HIV, ocular diseases, and transplantation. Dr. Little currently has 10 provisional, 2 pending, and 5 issued patents.Dr. Little has been recognized by national and international awards including the Curtis W. McGraw Research Award from the ASEE, being elected as a fellow of the BMES and AIMBE, a Carnegie Science Award for Research, the Society for Biomaterials' Young Investigator Award, the University of Pittsburgh's Chancellor's Distinguished Research Award, being named a Camille Dreyfus Teacher Scholar, being named an Arnold and Mabel Beckman Young Investigator, and being elected to the Board of Directors of the Society for Biomaterials. In addition, Dr. Little's exceptional teaching and leadership in education have also been recognized by both the University of Pittsburgh's Chancellor's Distinguished Teaching Award and a 2nd Carnegie Science Award for Post-Secondary Education. Dr. Little was also recently named one of Pittsburgh Magazine's 40 under 40, a “Fast Tracker” by the Pittsburgh Business Times, and also one of only five individuals in Pittsburgh who are “reshaping our world” by Pop City Media. About the Department of Chemical and Petroleum EngineeringThe Swanson School’s Department of Chemical and Petroleum Engineering serves undergraduate and graduate engineering students, the University and industry, through education, research, and participation in professional organizations and regional/national initiatives. Active areas of research in the Department include Biological and Biomedical Systems; Energy and Sustainability; and Materials Modeling and Design. The faculty holds a record of success in obtaining research funding such that the Department ranks within the top 25 U.S. Chemical Engineering departments for Federal R&D spending in recent years with annual research expenditures exceeding $7 million. ###

Upcoming Events


back
view more