headshot of Takashi Kozai

Takashi Kozai

Associate Professor
Linkedin Bioengineering Department

overview

Takashi Kozai is an Associate Professor of Bioengineering at the University of Pittsburgh. He received the B.A. (magna cum laude) degree with distinction in Molecular, Cellular, and Developmental Biology, and another B.A. degree with distinction in Biochemistry from the University of Colorado, Boulder, CO, USA, both in 2005, and M.S. and Ph.D. degrees in Biomedical Engineering from the University of Michigan, Ann Arbor, MI, USA, in 2007 and 2011, respectively. From 2011 to 2013, he was a Postdoc with the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, where he was appointed as a Research Assistant Professor from 2013-2015 before starting his own lab. His research interests include: (1) Manipulation of neuronal and non-neuronal cells to influence the function of neuronal networks, (2) Understanding the role of neuroimmune cells in neuronal damage and regeneration, and (3) Improving long-term performance of implanted electrodes and integrating man-made (engineered) technology with the human brain for the purpose of studying normal and injured/diseased nervous systems in vivo at the cellular level, as well as restoring function to patients.

about

Postdoctoral in Bioengineering, University of Pittsburgh, 2011 - 2013

PhD, Biomedical Engineering, University of Michigan, 2005 - 2011

MS, Biomedical Engineering, University of Michigan, 2005 - 2007

BA, Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 2001 - 2005

BA, Biochemistry, University of Colorado, Boulder, 2001 - 2005

Chen, K., Forrest, A.M., Burgos, G.G., & Kozai, T.D.Y. (2024). Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice. J Neural Eng, 21(3), 036033.IOP Publishing. doi: 10.1088/1741-2552/ad5049.

Li, F., Gallego, J., Tirko, N.N., Greaser, J., Bashe, D., Patel, R., Shaker, E., Van Valkenburg, G.E., Alsubhi, A.S., Wellman, S., Singh, V., Padilla, C.G., Gheres, K.W., Broussard, J.I., Bagwell, R., Mulvihill, M., & Kozai, T.D.Y. (2024). Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat Commun, 15(1), 5512.Springer Science and Business Media LLC. doi: 10.1038/s41467-024-49709-9.

Li, F., Gallego, J., Tirko, N.N., Greaser, J., Bashe, D., Patel, R., Shaker, E., Van Valkenburg, G.E., Alsubhi, A.S., Wellman, S., Singh, V., Padilla, C.G., Gheres, K.W., Broussard, J.I., Bagwell, R., Mulvihill, M., & Kozai, T.D.Y. (2024). Author Correction: Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat Commun, 15(1), 7618.Springer Science and Business Media LLC. doi: 10.1038/s41467-024-52088-w.

McNamara, I.N., Wellman, S.M., Li, L., Eles, J.R., Savya, S., Sohal, H.S., Angle, M.R., & Kozai, T.D.Y. (2024). Electrode sharpness and insertion speed reduce tissue damage near high-density penetrating arrays. J Neural Eng, 21(2), 026030.IOP Publishing. doi: 10.1088/1741-2552/ad36e1.

Suematsu, N., Vazquez, A.L., & Kozai, T.D. (2024). Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2024.01.01.573814.

Suematsu, N., Vazquez, A.L., & Kozai, T.D.Y. (2024). Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. J Neural Eng, 21(2), 026033.IOP Publishing. doi: 10.1088/1741-2552/ad3853.

Wellman, S., Forrest, A.M., Douglas, M.M., Subbaraman, A., Zhang, G., & Kozai, T.D.Y. (2024). Dynamic changes in structure and function of brain mural cells around chronically implanted microelectrodes. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2024.06.11.598494.

Chen, K., Cambi, F., & Kozai, T.D.Y. (2023). Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2023.01.31.526463.

Chen, K., Cambi, F., & Kozai, T.D.Y. (2023). Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIOMATERIALS, 301, 122210.Elsevier BV. doi: 10.1016/j.biomaterials.2023.122210.

Chen, K., Forrest, A., Gonzalez Burgos, G., & Kozai, T.D.Y. (2023). Neuronal functional connectivity is impaired in a layer dependent manner near the chronically implanted microelectrodes. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2023.11.06.565852.

Chen, K., Padilla, C.G., Kiselyov, K., & Kozai, T.D.Y. (2023). Cell-specific alterations in autophagy-lysosomal activity near the chronically implanted microelectrodes. BIOMATERIALS, 302, 122316.Elsevier BV. doi: 10.1016/j.biomaterials.2023.122316.

Hughes, C., & Kozai, T. (2023). Dynamic amplitude modulation of microstimulation evokes biomimetic onset and offset transients and reduces depression of evoked calcium responses in sensory cortices. BRAIN STIMULATION, 16(3), 939-965.Elsevier BV. doi: 10.1016/j.brs.2023.05.013.

Li, F., Gallego, J., Tirko, N.N., Greaser, J., Bashe, D., Patel, R., Shaker, E., Van Valkenburg, G.E., Alsubhi, A.S., Wellman, S., Singh, V., Padill, C.G., Gheres, K.W., Bagwell, R., Mulvihill, M., & Kozai, T.D.Y. (2023). Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2023.12.05.570162.

Wellman, S.M., Coyne, O.A., Douglas, M.M., & Kozai, T.D.Y. (2023). Aberrant accumulation of age- and disease-associated factors following neural probe implantation in a mouse model of Alzheimer's disease. bioRxiv.Cold Spring Harbor Laboratory. doi: 10.1101/2023.02.11.528131.

Wellman, S.M., Coyne, O.A., Douglas, M.M., & Kozai, T.D.Y. (2023). Aberrant accumulation of age- and disease-associated factors following neural probe implantation in a mouse model of Alzheimer's disease. J Neural Eng, 20(4), 046044.IOP Publishing. doi: 10.1088/1741-2552/aceca5.

Savya, S.P., Li, F., Lam, S., Wellman, S.M., Stieger, K.C., Chen, K., Eles, J.R., & Kozai, T.D.Y. (2022). In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. BIOMATERIALS, 289, 121784.Elsevier BV. doi: 10.1016/j.biomaterials.2022.121784.

Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2022). Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation. JOURNAL OF NEURAL ENGINEERING, 19(2), 026024.IOP Publishing. doi: 10.1088/1741-2552/ac5bf5.

Chen, K., Stieger, K.C., & Kozai, T.D. (2021). Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. CURRENT OPINION IN BIOTECHNOLOGY, 72, 112-120.Elsevier BV. doi: 10.1016/j.copbio.2021.10.008.

Chen, K., Wellman, S.M., Yaxiaer, Y., Eles, J.R., & Kozai, T.D.Y. (2021). In vivo spatiotemporal patterns of oligodendrocyte and myelin damage at the neural electrode interface. BIOMATERIALS, 268, 120526.Elsevier BV. doi: 10.1016/j.biomaterials.2020.120526.

Dubaniewicz, M., Eles, J.R., Lam, S., Song, S., Cambi, F., Sun, D., Wellman, S.M., & Kozai, T.D.Y. (2021). Inhibition of Na+/H+ exchanger modulates microglial activation and scar formation following microelectrode implantation. JOURNAL OF NEURAL ENGINEERING, 18(4), 045001.IOP Publishing. doi: 10.1088/1741-2552/abe8f1.

Eles, J.R., Stieger, K.C., & Kozai, T.D.Y. (2021). The temporal pattern of intracortical microstimulation pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons. JOURNAL OF NEURAL ENGINEERING, 18(1), 015001.IOP Publishing. doi: 10.1088/1741-2552/abc29c.

Fitz, N.F., Nam, K.N., Wolfe, C.M., Letronne, F., Playso, B.E., Iordanova, B.E., Kozai, T.D.Y., Biedrzycki, R.J., Kagan, V.E., Tyurina, Y.Y., Han, X., Lefterov, I., & Koldamova, R. (2021). Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. NATURE COMMUNICATIONS, 12(1), 3416.Springer Science and Business Media LLC. doi: 10.1038/s41467-021-23762-0.

Sahasrabuddhe, K., Khan, A.A., Singh, A.P., Stern, T.M., Ng, Y., Tadic, A., Orel, P., LaReau, C., Pouzzner, D., Nishimura, K., Boergens, K.M., Shivakumar, S., Hopper, M.S., Kerr, B., Hanna, M.E.S., Edgington, R.J., McNamara, I., Fell, D., Gao, P., Babaie-Fishani, A., Veijalainen, S., Klekachev, A.V., Stuckey, A.M., Luyssaert, B., Kozai, T.D.Y., Xie, C., Gilja, V., Dierickx, B., Kong, Y., Straka, M., Sohal, H.S., & Angle, M.R. (2021). The Argo: a high channel count recording system for neural recording in vivo. JOURNAL OF NEURAL ENGINEERING, 18(1), 015002.IOP Publishing. doi: 10.1088/1741-2552/abd0ce.

Trevathan, J.K., Asp, A.J., Nicolai, E.N., Trevathan, J.M., Kremer, N.A., Kozai, T.D.Y., Cheng, D., Schachter, M.J., Nassi, J.J., Otte, S.L., Parker, J.G., Lujan, J.L., & Ludwig, K.A. (2021). Calcium imaging in freely moving mice during electrical stimulation of deep brain structures. JOURNAL OF NEURAL ENGINEERING, 18(2), 026008.IOP Publishing. doi: 10.1088/1741-2552/abb7a4.

Bettinger, C.J., Ecker, M., Yoshida Kozai, T.D., Malliaras, G.G., Meng, E., & Voit, W. (2020). Recent advances in neural interfaces-Materials chemistry to clinical translation. MRS BULLETIN, 45(8), 655-668.Springer Science and Business Media LLC. doi: 10.1557/mrs.2020.195.

Eles, J.R., & Kozai, T.D.Y. (2020). In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. BIOMATERIALS, 234, 119767.Elsevier BV. doi: 10.1016/j.biomaterials.2020.119767.

Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. (2020). In vivomicrostimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. JOURNAL OF NEUROSCIENCE RESEARCH, 98(10), 2072-2095.Wiley. doi: 10.1002/jnr.24676.

Wellman, S.M., Guzman, K., Stieger, K.C., Brink, L.E., Sridhar, S., Dubaniewicz, M.T., Li, L., Cambi, F., & Kozai, T.D.Y. (2020). Cuprizone-induced oligodendrocyte loss and demyelination impairs recording performance of chronically implanted neural interfaces. BIOMATERIALS, 239, 119842.Elsevier BV. doi: 10.1016/j.biomaterials.2020.119842.

Yang, Q., Wu, B., Eles, J.R., Vazquez, A.L., Kozai, T.D.Y., & Cui, X.T. (2020). Zwitterionic Polymer Coating Suppresses Microglial Encapsulation to Neural Implants In Vitro and In Vivo. ADVANCED BIOSYSTEMS, 4(6), e1900287.Wiley. doi: 10.1002/adbi.201900287.

Baranov, S.V., Baranova, O.V., Yablonska, S., Suofu, Y., Vazquez, A.L., Kozai, T.D.Y., Cui, X.T., Ferrando, L.M., Larkin, T.M., Tyurina, Y.Y., Kagan, V.E., Carlisle, D.L., Kristal, B.S., & Friedlander, R.M. (2019). Mitochondria modulate programmed neuritic retraction. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(2), 650-659.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1811021116.

Chen, K., Lam, S., & Kozai, T.D. (2019). What directions of improvements in electrode designs should we expect in the next 5-10 years?. Bioelectron Med (Lond), 2(3), 119-122.Informa UK Limited. doi: 10.2217/bem-2019-0023.

Eles, J.R., Vazquez, A.L., Kozai, T.D.Y., & Cui, X.T. (2019). Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study. BIOMATERIALS, 195, 111-123.Elsevier BV. doi: 10.1016/j.biomaterials.2018.12.031.

Ereifej, E.S., Shell, C.E., Schofield, J.S., Charkhkar, H., Cuberovic, I., Dorval, A.D., Graczyk, E.L., Kozai, T.D.Y., Otto, K.J., Tyler, D.J., Welle, C.G., Widge, A.S., Zariffa, J., Moritz, C.T., Bourbeau, D.J., & Marasco, P.D. (2019). Neural engineering: the process, applications, and its role in the future of medicine. JOURNAL OF NEURAL ENGINEERING, 16(6), 063002.IOP Publishing. doi: 10.1088/1741-2552/ab4869.

Kozai, T.D.Y., & Purcell, E.K. (2019). BRAIN ELECTROPHYSIOLOGY Pipette-integrated microelectrodes. NATURE BIOMEDICAL ENGINEERING, 3(9), 682-683.Springer Science and Business Media LLC. doi: 10.1038/s41551-019-0452-x.

Michelson, N.J., Eles, J.R., Vazquez, A.L., Ludwig, K.A., & Kozai, T.D.Y. (2019). Calcium activation of cortical neurons by continuous electrical stimulation: Frequency dependence, temporal fidelity, and activation density. JOURNAL OF NEUROSCIENCE RESEARCH, 97(5), 620-638.Wiley. doi: 10.1002/jnr.24370.

Stocking, K.C., Vazquez, A.L., & Kozai, T.D.Y. (2019). Intracortical Neural Stimulation With Untethered, Ultrasmall Carbon Fiber Electrodes Mediated by the Photoelectric Effect. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 66(8), 2402-2412.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TBME.2018.2889832.

Wellman, S.M., Li, L., Yaxiaer, Y., McNamara, I., & Kozai, T.D.Y. (2019). Revealing Spatial and Temporal Patterns of Cell Death, Glial Proliferation, and Blood-Brain Barrier Dysfunction Around Implanted Intracortical Neural Interfaces. FRONTIERS IN NEUROSCIENCE, 13(MAY), 493.Frontiers Media SA. doi: 10.3389/fnins.2019.00493.

Cody, P.A., Eles, J.R., Lagenaur, C.F., Kozai, T.D.Y., & Cui, X.T. (2018). Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model. BIOMATERIALS, 161, 117-128.Elsevier BV. doi: 10.1016/j.biomaterials.2018.01.025.

Eles, J.R., Vazquez, A.L., Kozai, T.D.Y., & Cui, X.T. (2018). In vivo imaging of neuronal calcium during electrode implantation: Spatial and temporal mapping of damage and recovery. BIOMATERIALS, 174, 79-94.Elsevier BV. doi: 10.1016/j.biomaterials.2018.04.043.

Golabchi, A., Wu, B., Li, X., Carlisle, D.L., Kozai, T.D.Y., Friedlander, R.M., & Cui, X.T. (2018). Melatonin improves quality and longevity of chronic neural recording. BIOMATERIALS, 180, 225-239.Elsevier BV. doi: 10.1016/j.biomaterials.2018.07.026.

Iordanova, B., Vazquez, A., Kozai, T.D.Y., Fukuda, M., & Kim, S.G. (2018). Optogenetic investigation of the variable neurovascular coupling along the interhemispheric circuits. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 38(4), 627-640.SAGE Publications. doi: 10.1177/0271678X18755225.

Kozai, T.D.Y. (2018). The History and Horizons of Microscale Neural Interfaces. MICROMACHINES, 9(9), 445.MDPI AG. doi: 10.3390/mi9090445.

Michelson, N.J., & Kozai, T.D.Y. (2018). Isoflurane and ketamine differentially influence spontaneous and evoked laminar electrophysiology in mouse V1. JOURNAL OF NEUROPHYSIOLOGY, 120(5), 2232-2245.American Physiological Society. doi: 10.1152/jn.00299.2018.

Michelson, N.J., Vazquez, A.L., Eles, J.R., Salatino, J.W., Purcell, E.K., Williams, J.J., Cui, X.T., & Kozai, T.D.Y. (2018). Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface. JOURNAL OF NEURAL ENGINEERING, 15(3), 033001.IOP Publishing. doi: 10.1088/1741-2552/aa9dae.

Nicolai, E.N., Michelson, N.J., Settell, M.L., Hara, S.A., Trevathan, J.K., Asp, A.J., Stocking, K.C., Lujan, J.L., Kozai, T.D.Y., & Ludwig, K.A. (2018). Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements. MICROMACHINES, 9(10), 494.MDPI AG. doi: 10.3390/mi9100494.

Salatino, J.W., Ludwig, K.A., Kozai, T.D.Y., & Purcell, E.K. (2018). Glial responses to implanted electrodes in the brain (vol 1, pg 862, 2017). NATURE BIOMEDICAL ENGINEERING, 2(1), 52.Springer Science and Business Media LLC. doi: 10.1038/s41551-017-0177-7.

Wellman, S.M., & Kozai, T.D.Y. (2018). In vivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation. BIOMATERIALS, 164, 121-133.Elsevier BV. doi: 10.1016/j.biomaterials.2018.02.037.

Wellman, S.M., Cambi, F., & Kozai, T.D.Y. (2018). The role of oligodendrocytes and their progenitors on neural interface technology: A novel perspective on tissue regeneration and repair. BIOMATERIALS, 183, 200-217.Elsevier BV. doi: 10.1016/j.biomaterials.2018.08.046.

Wellman, S.M., Eles, J.R., Ludwig, K.A., Seymour, J.P., Michelson, N.J., McFadden, W.E., Vazquez, A.L., & Kozai, T.D.Y. (2018). A Materials Roadmap to Functional Neural Interface Design. ADVANCED FUNCTIONAL MATERIALS, 28(12).Wiley. doi: 10.1002/adfm.201701269.

Du, Z.J., Kolarcik, C.L., Kozai, T.D.Y., Luebben, S.D., Sapp, S.A., Zheng, X.S., Nabity, J.A., & Cui, X.T. (2017). Ultrasoft microwire neural electrodes improve chronic tissue integration. ACTA BIOMATERIALIA, 53, 46-58.Elsevier BV. doi: 10.1016/j.actbio.2017.02.010.

Eles, J.R., Vazquez, A.L., Snyder, N.R., Lagenaur, C., Murphy, M.C., Kozai, T.D.Y., & Cui, X.T. (2017). Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. BIOMATERIALS, 113, 279-292.Elsevier BV. doi: 10.1016/j.biomaterials.2016.10.054.

Salatino, J.W., Ludwig, K.A., Kozai, T.D.Y., & Purcell, E.K. (2017). Glial responses to implanted electrodes in the brain. NATURE BIOMEDICAL ENGINEERING, 1(11), 862-877.Springer Science and Business Media LLC. doi: 10.1038/s41551-017-0154-1.

Wellman, S.M., & Kozai, T.D.Y. (2017). Understanding the Inflammatory Tissue Reaction to Brain Implants To Improve Neurochemical Sensing Performance. ACS CHEMICAL NEUROSCIENCE, 8(12), 2578-2582.American Chemical Society (ACS). doi: 10.1021/acschemneuro.7b00403.

Khilwani, R., Gilgunn, P.J., Kozai, T.D.Y., Ong, X.C., Korkmaz, E., Gunalan, P.K., Cui, X.T., Fedder, G.K., & Ozdoganlar, O.B. (2016). Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization. BIOMEDICAL MICRODEVICES, 18(6), 97.Springer Science and Business Media LLC. doi: 10.1007/s10544-016-0125-4.

Kozai, T.D.Y., Catt, K., Du, Z., Na, K., Srivannavit, O., Haque, R.U.M., Seymour, J., Wise, K.D., Yoon, E., & Cui, X.T. (2016). Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 63(1), 111-119.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/TBME.2015.2445713.

Kozai, T.D.Y., Eles, J.R., Vazquez, A.L., & Cui, X.T. (2016). Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights. JOURNAL OF NEUROSCIENCE METHODS, 258, 46-55.Elsevier BV. doi: 10.1016/j.jneumeth.2015.10.007.

Kozai, T.D.Y., Jaquins-Gerstl, A.S., Vazquez, A.L., Michael, A.C., & Cui, X.T. (2016). Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. BIOMATERIALS, 87, 157-169.Elsevier BV. doi: 10.1016/j.biomaterials.2016.02.013.

Patel, P.R., Zhang, H., Robbins, M.T., Nofar, J.B., Marshall, S.P., Kobylarek, M.J., Kozai, T.D.Y., Kotov, N.A., & Chestek, C.A. (2016). Chronic in vivo stability assessment of carbon fiber microelectrode arrays. JOURNAL OF NEURAL ENGINEERING, 13(6), 066002.IOP Publishing. doi: 10.1088/1741-2560/13/6/066002.

Alba, N.A., Du, Z.J., Catt, K.A., Kozai, T.D.Y., & Cui, X.T. (2015). In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating. Biosensors (Basel), 5(4), 618-646.MDPI AG. doi: 10.3390/bios5040618.

Kolarcik, C.L., Catt, K., Rost, E., Albrecht, I.N., Bourbeau, D., Du, Z., Kozai, T.D.Y., Luo, X., Weber, D.J., & Cui, X.T. (2015). Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. JOURNAL OF NEURAL ENGINEERING, 12(1), 016008.IOP Publishing. doi: 10.1088/1741-2560/12/1/016008.

Kolarcik, C.L., Luebben, S.D., Sapp, S.A., Hanner, J., Snyder, N., Kozai, T.D.Y., Chang, E., Nabity, J.A., Nabity, S.T., Lagenaur, C.F., & Cui, X.T. (2015). Elastomeric and soft conducting microwires for implantable neural interfaces. SOFT MATTER, 11(24), 4847-4861.Royal Society of Chemistry (RSC). doi: 10.1039/c5sm00174a.

Kozai, T.D.Y., & Vazquez, A.L. (2015). Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: new challenges and opportunities. JOURNAL OF MATERIALS CHEMISTRY B, 3(25), 4965-4978.Royal Society of Chemistry (RSC). doi: 10.1039/c5tb00108k.

Kozai, T.D.Y., Catt, K., Li, X., Gugel, Z.V., Olafsson, V.T., Vazquez, A.L., & Cui, X.T. (2015). Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. BIOMATERIALS, 37, 25-39.Elsevier BV. doi: 10.1016/j.biomaterials.2014.10.040.

Kozai, T.D.Y., Jaquins-Gerstl, A.S., Vazquez, A.L., Michael, A.C., & Cui, X.T. (2015). Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies. ACS CHEMICAL NEUROSCIENCE, 6(1), 48-67.American Chemical Society (ACS). doi: 10.1021/cn500256e.

Patel, P.R., Na, K., Zhang, H., Kozai, T.D.Y., Kotov, N.A., Yoon, E., & Chestek, C.A. (2015). Insertion of linear 8.4μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. JOURNAL OF NEURAL ENGINEERING, 12(4), 046009.IOP Publishing. doi: 10.1088/1741-2560/12/4/046009.

Rozai, T.D.Y., Du, Z., Gugel, Z.V., Smith, M.A., Chase, S.M., Bodily, L.M., Caparosa, E.M., Friedlander, R.M., & Cui, X.T. (2015). Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. JOURNAL OF NEUROSCIENCE METHODS, 242, 15-40.Elsevier BV. doi: 10.1016/j.jneumeth.2014.12.010.

Kozai, T.D.Y., Alba, N.A., Zhang, H., Kotov, N.A., Gaunt, R.A., & Cui, X.T. (2014). Nanostructured Coatings for Improved Charge Delivery to Neurons. In Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. (pp. 71-134).Springer New York. doi: 10.1007/978-1-4899-8038-0_4.

Kozai, T.D.Y., Gugel, Z., Li, X., Gilgunn, P.J., Khilwani, R., Ozdoganlar, O.B., Fedder, G.K., Weber, D.J., & Cui, X.T. (2014). Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. BIOMATERIALS, 35(34), 9255-9268.Elsevier BV. doi: 10.1016/j.biomaterials.2014.07.039.

Kozai, T.D.Y., Li, X., Bodily, L.M., Caparosa, E.M., Zenonos, G.A., Carlisle, D.L., Friedlander, R.M., & Cui, X.T. (2014). Effects of caspase-1 knockout on chronic neural recording quality and longevity: Insight into cellular and molecular mechanisms of the reactive tissue response. BIOMATERIALS, 35(36), 9620-9634.Elsevier BV. doi: 10.1016/j.biomaterials.2014.08.006.

Kozai, T.D.Y., Langhals, N.B., Patel, P.R., Deng, X., Zhang, H., Smith, K.L., Lahann, J., Kotov, N.A., & Kipke, D.R. (2012). Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. NATURE MATERIALS, 11(12), 1065-1073.Springer Science and Business Media LLC. doi: 10.1038/NMAT3468.

Kozai, T.D.Y., Vazquez, A.L., LWeaver, C., Kim, S.G., & Cui, X.T. (2012). In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. JOURNAL OF NEURAL ENGINEERING, 9(6), 066001.IOP Publishing. doi: 10.1088/1741-2560/9/6/066001.

Kozai, T.D.Y., Marzullo, T.C., Hooi, F., Langhals, N.B., Majewska, A.K., Brown, E.B., & Kipke, D.R. (2010). Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two-photon mapping. JOURNAL OF NEURAL ENGINEERING, 7(4), 046011.IOP Publishing. doi: 10.1088/1741-2560/7/4/046011.

Escamilla-Mackert, T., Langhals, N.B., Kozai, T.D.Y., & Kipke, D.R. (2009). Insertion of a three dimensional silicon microelectrode assembly through a thick meningeal membrane. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 1616-1618.IEEE. doi: 10.1109/IEMBS.2009.5333221.

Kozai, T.D.Y., & Kipke, D.R. (2009). Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. JOURNAL OF NEUROSCIENCE METHODS, 184(2), 199-205.Elsevier BV. doi: 10.1016/j.jneumeth.2009.08.002.

Chen, K., Padilla, C.G., Kiselyov, K., & Kozai, T. Impairment of autophagy-lysosomal activity near the chronically implanted microelectrodes. Cold Spring Harbor Laboratory. doi: 10.1101/2023.05.31.543108.

Chen, K., Wu, B., Krahe, D., Vazquez, A., Siegenthaler, J.R., Rechenberg, R., Li, W., Cui, X.T., & Kozai, T.D.Y. Potential of Photoelectric Stimulation with Ultrasmall Carbon Electrode on Neural Tissue: New Directions in Neuromodulation Technology Development. Cold Spring Harbor Laboratory. doi: 10.1101/2024.02.17.580823.

Chen, K., Wu, B., Krahe, D., Vazquez, A., Siegenthaler, J.R., Rechenberg, R., Li, W., Cui, X.T., & Kozai, T.D.Y. Potential of Photoelectric Stimulation with Ultrasmall Carbon Electrode on Neural Tissue: New Directions in Neurostimulation Technology Development. Advanced Functional Materials.Wiley. doi: 10.1002/adfm.202403164.

Hughes, C., & Kozai, T. Biomimetic microstimulation of sensory cortices. Cold Spring Harbor Laboratory. doi: 10.1101/2022.11.11.516221.

McNamara, I.N., Wellman, S.M., Li, L., Eles, J.R., Savya, S., Sohal, H.S., Angle, M.R., & Kozai, T.D.Y. Impact of electrodes design and insertion methods to surrounding cortical tissues from high-density arrays. Cold Spring Harbor Laboratory. doi: 10.1101/2023.11.22.568119.

Michelson, N.J., Eles, J.R., Vazquez, A.L., Ludwig, K.A., & Kozai, T.D.Y. Calcium activation of cortical neurons by continuous electrical stimulation: Frequency-dependence, temporal fidelity and activation density. Cold Spring Harbor Laboratory. doi: 10.1101/338525.

Savya, S.P., Li, F., Lam, S., Wellman, S.M., Stieger, K.C., Chen, K., Eles, J.R., & Kozai, T.D.Y. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Cold Spring Harbor Laboratory. doi: 10.1101/2022.07.01.498483.

Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. Cold Spring Harbor Laboratory. doi: 10.1101/2019.12.16.878892.

Stieger, K.C., Eles, J.R., Ludwig, K.A., & Kozai, T.D.Y. Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation. Cold Spring Harbor Laboratory. doi: 10.1101/2022.01.14.476351.

Trevathan, J.K., Asp, A.J., Nicolai, E.N., Trevathan, J.M., Kremer, N.A., Kozai, T.D., Cheng, D., Schachter, M., Nassi, J.J., Otte, S.L., Parker, J.G., Lujan, J.L., & Ludwig, K.A. Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures. Cold Spring Harbor Laboratory. doi: 10.1101/460220.

Gilgunn, P.J., Khilwani, R., Kozai, T.D.Y., Weber, D.J., Cui, X.T., Erdos, G., Ozdoganlar, O.B., & Fedder, G.K. (2012). An ultra-compliant, scalable neural probe with molded biodissolvable delivery vehicle. In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), (pp. 56-59).IEEE. doi: 10.1109/memsys.2012.6170092.