Pitt | Swanson Engineering

Since its founding in 1893 by two legends, George Westinghouse and Reginald Fessenden, the Department of Electrical and Computer Engineering at Pitt has excelled in education, research, and service.  Today, the department features innovative undergraduate and graduate programs and world-class research centers and labs, combining theory with practice at the nexus of computer and electrical engineering, for our students to learn, develop, and lead lives of impact.





Jul
23
2018

If Only A.I. Had a Brain

Electrical & Computer

PITTSBURGH (July 23, 2018) … Digital computation has rendered nearly all forms of analog computation obsolete since as far back as the 1950s. However, there is one major exception that rivals the computational power of the most advanced digital devices: the human brain.The human brain is a dense network of neurons. Each neuron is connected to tens of thousands of others, and they use synapses to fire information back and forth constantly. With each exchange, the brain modulates these connections to create efficient pathways in direct response to the surrounding environment. Digital computers live in a world of ones and zeros. They perform tasks sequentially, following each step of their algorithms in a fixed order.A team of researchers from Pitt’s Swanson School of Engineering have developed an “artificial synapse” that does not process information like a digital computer but rather mimics the analog way the human brain completes tasks. Led by Feng Xiong, assistant professor of electrical and computer engineering, the researchers published their results in the recent issue of the journal Advanced Materials (DOI:10.1002/adma.201802353). His Pitt co-authors include Mohammad Sharbati (first author), Yanhao Du, Jorge Torres, Nolan Ardolino, and Minhee Yun.“The analog nature and massive parallelism of the brain are partly why humans can outperform even the most powerful computers when it comes to higher order cognitive functions such as voice recognition or pattern recognition in complex and varied data sets,” explains Dr. Xiong.An emerging field called “neuromorphic computing” focuses on the design of computational hardware inspired by the human brain. Dr. Xiong and his team built graphene-based artificial synapses in a two-dimensional honeycomb configuration of carbon atoms. Graphene’s conductive properties allowed the researchers to finely tune its electrical conductance, which is the strength of the synaptic connection or the synaptic weight. The graphene synapse demonstrated excellent energy efficiency, just like biological synapses. In the recent resurgence of artificial intelligence, computers can already replicate the brain in certain ways, but it takes about a dozen digital devices to mimic one analog synapse. The human brain has hundreds of trillions of synapses for transmitting information, so building a brain with digital devices is seemingly impossible, or at the very least, not scalable. Xiong Lab’s approach provides a possible route for the hardware implementation of large-scale artificial neural networks.According to Dr. Xiong, artificial neural networks based on the current CMOS (complementary metal-oxide semiconductor) technology will always have limited functionality in terms of energy efficiency, scalability, and packing density. “It is really important we develop new device concepts for synaptic electronics that are analog in nature, energy-efficient, scalable, and suitable for large-scale integrations,” he says. “Our graphene synapse seems to check all the boxes on these requirements so far.”With graphene’s inherent flexibility and excellent mechanical properties, these graphene-based neural networks can be employed in flexible and wearable electronics to enable computation at the “edge of the internet”—places where computing devices such as sensors make contact with the physical world.“By empowering even a rudimentary level of intelligence in wearable electronics and sensors, we can track our health with smart sensors, provide preventive care and timely diagnostics, monitor plants growth and identify possible pest issues, and regulate and optimize the manufacturing process—significantly improving the overall productivity and quality of life in our society,” Dr. Xiong says.The development of an artificial brain that functions like the analog human brain still requires a number of breakthroughs. Researchers need to find the right configurations to optimize these new artificial synapses. They will need to make them compatible with an array of other devices to form neural networks, and they will need to ensure that all of the artificial synapses in a large-scale neural network behave in the same exact manner. Despite the challenges, Dr. Xiong says he’s optimistic about the direction they’re headed.“We are pretty excited about this progress since it can potentially lead to the energy-efficient, hardware implementation of neuromorphic computing, which is currently carried out in power-intensive GPU clusters. The low-power trait of our artificial synapse and its flexible nature make it a suitable candidate for any kind of A.I. device, which would revolutionize our lives, perhaps even more than the digital revolution we’ve seen over the past few decades,” Dr. Xiong says. ###
Matt Cichowicz, Communications Writer
Jul
16
2018

A Foundation for Future Founders: The Swanson School Empowers a New Generation of Entrepreneurs

All SSoE News, Chemical & Petroleum, Electrical & Computer, MEMS, Student Profiles

.pullquote-feature { width: 50%; border-top: 1px solid #151414; border-bottom: 1px solid #151414; margin-left: auto; margin-right: auto; display: block; } With a 95–97 percent job placement rate for graduates over the past three years1, the University of Pittsburgh Swanson School of Engineering provides a well-manicured path for those traveling from Benedum Hall to the halls of Fortune 500 companies. At an increasing rate, students who embrace risk and uncertainty for the sake of innovation are also finding the tools they need at the Swanson School to carve their own paths to success. Aspiring entrepreneurs can attend networking opportunities, compete for seed money, and receive one-on-one mentoring from experienced entrepreneurs and educators right on campus. There were 23 startups originating from the University of Pittsburgh in the 2017-18 fiscal year, a 53 percent increase from the previous year. In the spring of 2017, two of those companies—one with a tomato-picking robot and the other with nanoparticle-filled oxygen tanks—took their first steps off the Pitt campus and into the startup world. “Engineering students are adept at solving real-world problems. That is why so many of the students we have participating in our entrepreneurship programs and competitions come from the Swanson School. They want to see their ideas translated into new products and services that advance the state of the art and improve people’s lives,” said Babs Carryer, Director of the Big Idea Center for student entrepreneurship at the Pitt Innovation Institute. “We know we’re undertaking a good amount of risk, but knowing that there is a whole industry that needs the product we are building helps mitigate that. At the end of the day, there always is risk, but for me, to not do this would lead to regrets. We are all about solving the problem.” --Brandon Contino, CEO at Four Growers, Pitt ECE ‘17 Four Growers team: Brandon Contino (left) and Dan Chi (right). Instead of taking a traditional route upon graduation, two recent University of Pittsburgh graduates have taken a risk on a project cooked up during their undergraduate studies in the Swanson School of Engineering. Brandon Contino (ECE ‘17) and Dan Chi (MEMS ‘18) have spent the past year tirelessly promoting their startup, Four Growers, in a series of competitions, and their most recent success will take them to Silicon Valley where they will be among the leading minds of innovation and technology. Brandon and Dan met while working in the lab of David Sanchez, an assistant professor in the Department of Civil and Environmental Engineering at Pitt. The two collaborated on different projects involving hydroponics, a method of growing plants in a water-based, nutrient rich solution. Growing increasingly interested in this method of farming, the pair visited a hydroponic tomato greenhouse in Chicago where they learned of a pressing problem facing the industry. Brandon explained, “More than 50% of the tomatoes consumed in the US are grown in greenhouse farms, but the industry is facing an issue with labor. After talking to the farmers, we discovered that there are shortages in the availability and reliability of the labor force, and we wanted to find a solution through robotics and automation.” This spurred the creation of Four Growers. Brandon and Dan planned to develop a product that provides reliable harvesting year-round for greenhouse farms. Creating a startup is a high risk, high reward endeavor, but Brandon and Dan had faith in their idea. “After speaking with other greenhouses about the industry, we learned that labor was a common problem, and when you have a strong need, clearly defined from your future customer, it really helps to lower the risk,” said Brandon. Confident in their mission, the Four Growers team developed a robotic tomato harvesting device for commercial greenhouses that can efficiently find and pick ripe tomatoes off the vine. The robot’s decision making is controlled by an algorithm that uses cameras and a neural network trained to find the proper fruit. A robotic arm and custom gripper enable the robot to harvest the tomatoes without damaging them. Additionally, their device provides analytics to the growers to help improve profitability. Creating the product is only one step towards entrepreneurial success; getting your product to market requires a bit of business acumen. Brandon and Dan believe they have benefitted from their past experiences at Pitt. During Brandon’s undergraduate years, he served as president of multiple organizations including Pitt Engineering Student Council, the Robotics and Automation Society, and the Panther Amateur Radio Club. Dan created the Hydroponics Club in Dr. Sanchez’s lab, was a member of Engineers for a Sustainable World, and acted as fundraising director of the Society of Asian Scientists and Engineers. These experiences have introduced them to aspects of leadership and management applicable to their new executive roles. The Four Growers team has also taken advantage of various entrepreneurial programs and resources like Pitt’s Innovation Institute and Carnegie Mellon University’s Project Olympus, which have both provided valuable mentorship and contacts. Brandon said, “The connections we’ve made along the way have played a large role in our success. We’ve been able to discuss business aspects of the company with our mentors and advisors, and their expertise and guidance have refined our ability to operate both the technical and business sides of Four Growers.” Hydroponic tomato greenhouse. Photo credit: Shutterstock. The journey, however, has not been entirely smooth sailing. “Creating and running a business has a steep learning curve, and Dan and I have been drinking from the fire hose for a while now,” said Brandon. “One of our biggest hurdles has been financing. While Dan finished his degree, we decided to bootstrap and as a hardware company, it takes money to iterate on a product. Initially, we just didn’t have much funding so we had to spend a lot of time searching for lower cost options or workarounds, which slowed some of our technical development.” To overcome this setback, Brandon and Dan have spent the past year trying to raise funds through a series of competitions. Their first success was with Pitt’s Randall Family Big Idea Competition where they won first place and $25,000 to help launch their idea. Then they took second place and $10,000 against some of the most innovative students from the 15 Atlantic Coast Conference schools at the ACC InVenture Prize competition. Their last event took them to Texas where they became one of the first two Pitt teams to compete in the prestigious Rice Business Plan Competition and made it to the semi-finals. With funds starting to accumulate and Dan’s graduation imminent, they looked for the next step towards success and applied to Y Combinator, a highly competitive startup accelerator in Mountain View, California whose alumni include Airbnb, Dropbox and reddit. Four Growers was accepted as one of 90 teams and will receive $120,000 in exchange for 7 percent equity position in their company. Brandon and Dan will travel back and forth between greenhouse farms, Pittsburgh, and Silicon Valley for three months during the summer and receive intensive training to refine their business and prepare pitches to investors. Four Growers has successfully completed autonomous tomato harvesting inside greenhouses with their device and plan to have a beta prototype in operation by December 2018. Brandon and Dan’s entrepreneurial spirit and passion for sustainable farming helped lead them down this career path. The team looks forward to the challenges ahead and hopes to reap the harvest of a successful business. Brandon said, “We know we’re undertaking a good amount of risk, but knowing that there is a whole industry that needs the product we are building really helps mitigate that. At the end of the day though there always is risk, but for me, to not do this would lead to regrets. We are all about solving the problem.” “I don’t think this could have happened at another university without these kind of resources. Once I dug into something and realized someone at my age could actually do this and find the support—all the support that’s out there—it really propelled the business into reality, and it became the thing I knew I wanted to do.” --Blake Dubé, CEO and Co-Founder at Aeronics Inc., Pitt ChemE ‘17 Aeronics team: Alec Kaija (left), Blake Dubé (middle), Mark Spitz (right). With his sophomore year at the University of Pittsburgh nearing an end, the last thing Blake Dubé (ChemE ’17) was looking to do was start a business. “I didn’t just breeze through the first two years of college,” he recalls. “It took a lot of work focusing on my classes and learning about chemical engineering. It wasn’t like I decided to start a business because I was looking for a bigger challenge.” Nearly three years later, Blake has won about a dozen startup competitions, he has a product scheduled to go to market this year, and he works full-time as CEO of the company he co-founded, Aeronics, Inc. Back in the spring of 2015, the only thing Blake was looking for was a lab to do summer research. After a visit to the ninth floor of Benedum Hall, Blake started research in the lab of Chris Wilmer, assistant professor of chemical engineering and himself an entrepreneur. Dr. Wilmer and his team were researching ways to use nanomaterials to improve gas storage, transportation, and safety in the many industries kept aloft by gas. Blake spent his time in the lab running computer simulations to find the best nanomaterial configurations for maximizing gas storage without the high levels of heat and pressure caused by putting too much gas into too small a container. “I realized gas storage was such a broad field and started wondering where I could make a difference in the three months I would be working in the lab,” says Blake. “Most of the focus seemed to be on energy sources like methane and hydrogen, and there wasn’t as much work being done with oxygen. I started to think about how better oxygen storage could make an impact.” The following semester, Blake enrolled in ChE 314: Taking Products to Market taught by Eric Beckman, Distinguished Service Professor of Chemical Engineering and co-director of the Mascaro Center for Sustainable Innovation at Pitt. Dr. Beckman, who had co-founded his own business for commercializing technology, guided students through the process of turning ideas into marketable products. When Blake showed an interest in applying his lab research to the class, Dr. Wilmer suggested he enter the Randall Family Big Idea Competition, a university-wide innovation challenge. Everyday Oxygen prototype. The Randall Family competition takes place from February to March each year and awards $100,000 in prizes to Pitt students working on interdisciplinary teams to bring product ideas to market. Blake recruited teammates Alec Kaija, a PhD candidate in Dr. Wilmer’s lab, and Mark Spitz, a kinesiology and exercise science student and long-time friend of Blake from their hometown of York, Pa. Dr. Wilmer served as the team’s faculty advisor. “We started the Randall Family competition with the idea of fitting oxygen and the materials from Dr. Wilmer’s lab in a soda can. By the end of it, we actually had plans for a viable product, and since we won the grand prize, we had money to get started,” says Blake. The team won first place and the grand prize of $25,000 to get their company up and running. Blake, Mark, and Alec became co-founders of the startup Aeronics and went on to win several more competitions. By the spring of 2017, Aeronics had claimed more than $120,000 in prize money. While Blake and Mark were getting fitted for their graduation robes, they were measuring up the odds of successfully running their own business. “BASF, the largest chemical producer in the world, offered me a full-time job before I graduated. It would have been a great way to start my career. Around the same time, Aeronics was incorporated,” he says. “When you’re an entrepreneur at the university, before you graduate is different than after you graduate. Now you better make it work. The pressure is on.” Fortunately, Aeronics handles pressure well. Their prototype could store about three times as much oxygen as a standard portable oxygen tank at the same pressure. Still considering a more traditional career path, Blake consulted with Steve Little, the chair of the chemical engineering department, for advice. Dr. Little had been helping Aeronics navigate some of the issues with starting a private company at a university. “I remember asking Dr. Little for advice because he had experience starting his own business. He helped us a lot throughout the beginning stages, but he said to me, ‘I can give you all the advice you want, but sooner or later you’re just going to have to do it to find out if it will work,’” says Blake. One year later, Aeronics has completed two startup accelerator cohorts, found its own lab space to operate, and developed a product called Everyday Oxygen, which stores three times the oxygen as competitors’ cans. Everyday Oxygen is available for pre-order on their website and will be ready to ship in the fall. Looking back, Blake says he liked most of his experiences with research, internships, and studying chemical engineering at Pitt in general. He didn’t dream of becoming an entrepreneur as a kid, but now that he’s running his own business, it’s hard to imagine doing anything else. “I don’t think this could have happened at another university without these kind of resources. Once I dug into something and realized someone at my age could actually do this and find the support—all the support that’s out there—it really propelled the business into reality, and it became the thing I knew I wanted to do,” he says. ### 195 to 97 percent job placement rate over the past three years, http://www.engineering.pitt.edu/Friends-Giving-Administration/Office-of-the-Dean/Quick-Facts/
Leah Russell (Four Growers feature) and Matt Cichowicz (Aeronics feature)
Jun
20
2018

ECE’s Aryana Nakhai Wins Society of Women Engineers Scholarship

Electrical & Computer, Student Profiles

PITTSBURGH (June 20, 2018) … The Society of Women Engineers (SWE) has selected Aryana Nakhai, an undergraduate electrical engineering student, as the recipient of its 2018 Lockheed Martin Corporation Scholarship totaling $2,500 for the 2018-19 academic year. “This award is recognition of Aryana’s incredible passion for power systems and electrical engineering, and it speaks to the engineering community’s confidence that she will contribute great things during her professional career,” said Gregory Reed, professor of Electrical and Computer Engineering at the Swanson School of Engineering and director of Pitt’s Center for Energy and the Energy GRID Institute.SWE Scholarships recognize outstanding academic achievement and strong engineering potential, according to the SWE website. Recipients must be women admitted to accredited baccalaureate or graduate programs in preparation for careers in engineering, engineering technology, and computer science. The SWE Scholarship Selection Committee chose 2018 award recipients from a pool of more than 1,800 applicants.Aryana has been a member of Pitt SWE since her freshman year in 2014. She said, “SWE is an organization that has always stood out to me. I strongly believe in the importance for a female support system and everything that SWE stands for.”“I am especially excited since Lockheed Martin has been one of my biggest inspirations for pursing a degree in electrical engineering,” Aryana continued. “As an engineer, I very much enjoy being part of a team to develop solutions to exciting and new, complex challenges.”Aryana is studying electrical engineering with a concentration on power systems. She is scheduled to graduate in December 2018 and plans to pursue a master’s degree at Pitt after graduation.While an undergraduate student, Aryana completed three co-op rotations as a Process Planning Engineer at BMW U.S. Manufacturing Co. She also represents the University of Pittsburgh on the Student Innovation Board for the Foundations for Engineering Education for Distributed Energy Resources (FEEDER) Consortium. In this role, Aryana addresses and explains power related topics on campus.“My goal is to inspire students to gain interest in power engineering, allow them the opportunity to learn about distributed technology, and express the need for power engineers in industry,” she said. ###
Matt Cichowicz, Communications Writer
Jun
18
2018

Swanson School professors capture award to improve engineering instruction and learning

Electrical & Computer, Industrial

PITTSBURGH (June 18, 2018) … When imagining a college classroom, one might imagine a professor standing at a podium and lecturing a room full of students taking notes. A pair of professors from the University of Pittsburgh want to reimagine this simplistic approach with a more interactive experience. Renee Clark, research assistant professor of industrial engineering, and Sam Dickerson, assistant professor of electrical and computer engineering, hope to impact education at Pitt’s Swanson School of Engineering through widespread propagation of active learning. In an effort to strengthen the role of teaching at Pitt, the Provost’s Advisory Council on Instructional Excellence (ACIE) created the Innovation in Education Awards Program to support faculty proposals which aim to reinvent traditional classroom instruction. Clark and Dickerson received one of eight awards this year for their project. “With active learning, we ask students to do something in the classroom beyond just listening to a lecture and taking notes,” explained Clark. “Students should be engaged and interacting with class content. Whether through brainstorming solutions to a problem, solving calculations in a group, or writing a one-minute reflection at the end of class, the goal is to have professors take a step back from lecturing and allow students to participate in the lesson. This promotes critical thinking and improves knowledge retention” Clark began working with Dickerson in July 2016 after they attended a Swanson School active learning workshop. They decided that they wanted to take their experience a step further and coach other instructors in how they can implement what they learned from this workshop in their classrooms. Clark and Dickerson’s project will begin this summer with a cohort of nine professors. This pilot group will work to implement simple active learning activities for their courses in two engineering departments (IE and ECE). Clark said, “We want to create a supportive learning community where we can exchange ideas and plans for the use of active learning.” Clark and Dickerson will coach each of the professors throughout the school year by observing their classrooms and giving feedback. At the end of the year, they will reunite the professors for a focus group to further improve their model for future participants. While there are many useful advanced active learning techniques, Clark and Dickerson plan to start simple. Dickerson’s implementation of the “think, pair, share” activity in his classroom demonstrates the success of this approach. He explains, “Rather than starting a class with an example and running through it, you give the students a problem, allow them to individually think about it, then ask them to come up with a solution as a group.” He discovered that using this activity changed the dynamic of his classroom. He said, “It became completely normal for students to speak up when they didn’t understand a concept or offer help to peers who were struggling with certain topics.” The ease of execution is a selling point for instructors who may debate changing their classroom structure. “Many professors do not have the time for more-involved active learning so we are sharing simple activities that require little preparation,” Clark said. “Instructors can introduce these methods on the fly or in response to a lack of classroom interaction. It is easy to stop a lecture and allow students to think about what they’re learning.” Dickerson has found that using these activities has been beneficial to more than just the students. He said, “Using active learning has helped me reflect on the way I teach; what I thought were easy concepts, were not. This strategy has allowed me to reevaluate my lessons and improve student comprehension.” Clark and Dickerson have had positive feedback on their efforts and found that students quickly become comfortable in this kind of environment. Based on data collected over the past two years, simple active learning has also positively impacted exam scores. This response encouraged them to apply to the Innovation in Education program and adapt their experience into a school-wide effort. Dickerson said, “Although these types of teaching techniques work well, the number of adopters is low. We want to change that.” The overall goal of this project is to have other Swanson School professors adapt this successful model to their classrooms. They hope to enhance student engagement, increase information retention, and improve students’ ability to use gained knowledge. “We want to make classrooms more learner-centered. In a teacher-centered environment, the focus is on content delivery. With a learner-centered classroom, we switch the spotlight to the student,” said Clark. “With simple active learning, class may still be lecture based, but you add some elements to make the students more active and turn the focus on them.” ###

Jun
7
2018

Capturing light in a waveguide array

Electrical & Computer

Originally published by Penn State University Eberly College of Science. Reposted with permission. UNIVERSITY PARK, Pa. — Cheaper and more efficient photonic devices, such as lasers, optical fibers and other light sources, may be possible with confined light that is unaffected by imperfections in the material that confines it, according to new research. A team of physicists and engineers from Penn State, the University of Pittsburgh and the University of Illinois have demonstrated in a proof-of-concept experiment that they can contain light in such a way that makes it highly insensitive to defects that might be present in a material. The results of the research appeared online on June 4 in the journal Nature Photonics (DOI: 10.1038/s41566-018-0179-3). “Photonic technology involves the generation, transmission and manipulation of light, and it is used ubiquitously across industries,” said Mikael Rechtsman, the Downsbrough Early Career Assistant Professor of Physics at Penn State and the leader of the research team. “It underlies the fiber optic network that forms the skeleton of the internet; solar cells used in the generation of sustainable energy; and high-power lasers used in manufacturing, among many other applications. Finding a way to confine and manipulate light so that it is insensitive to defects could have a huge impact on this technology. To confine the light, the researchers used a complex lattice structure composed of “waveguides” precisely carved in glass. These waveguides act like wires, but for light instead of electricity. In this structure, light enters at one end of the waveguide and gets trapped and confined as it propagates forward through the wires. There, the trapped light becomes immune to imperfections in the positions of the waveguides, and thus significant imperfections in the structure can be tolerated. “The light becomes insensitive because of the phenomenon of ‘topological protection,'” said Rechtsman. “This concept has been used extensively in the context of solid-state electronic physics. The waveguide structure is a photonic analogue of the so-called ‘topological crystalline insulators,’ and this form of topological protection can potentially be used across a range of photonic devices, including in nano-scale lasers, specialized nonlinear optical fibers, and for robustly and precisely coupling between photons and electrons for manipulating quantum information.” "From the perspective of photonic engineers, this is an wonderful learning opportunity to see the connections between lightwave engineering at length scale of micrometers, and quantum mechanics that typically deals with electron waves at length scale 10,000 times smaller," noted Kevin P. Chen, Professor of Electrical and Computer Engineering at the University of Pittsburgh Swanson School of Engineering. "It's also a fine example of precision laser manufacturing that took three generations of graduate students to perfect." Confining light in this way could make many photonic devices both more efficient and cheaper to produce. Beyond that, this is an example of the potentially cross-disciplinary — uniting photonics and solid-state electronics — use of topological protection and demonstrates the broad applicability of this phenomenon beyond its conception in electronic solid-state physics. “In photonics, it is extremely important to be able to trap light and confine it to very small spaces,” said Rechtsman. “It compresses the maximum amount of optical power into the smallest area or volume inside a material, making it interact more strongly with the material, and thus it is more efficient at whatever it is meant to do. A major difficulty with doing this has been that strong confinement brings with it extreme sensitivity to any imperfections in the material, which can often either inhibit efficiency or make the device very expensive to fabricate. Our results suggest that we can overcome this difficulty.” In addition to Rechtsman, the research team includes Jiho Noh and Matthew J. Collins at Penn State; Wladimir A. Benalcazar and Taylor L. Hughes at the University of Illinois at Urbana-Champaign; and Sheng Huang and Kevin Chen at the University of Pittsburgh. The research was funded by the National Science Foundation, the Penn State Materials Research Science and Engineering Center, the Alfred P. Sloan Foundation, and the Office of Naval Research Young Investigators Program. ###
Sam Sholtis, Penn State University

Upcoming Events


back
view more