Pitt | Swanson Engineering

The Department of Mechanical Engineering and Materials Science (MEMS) is the largest in the Swanson School of Engineering in terms of students and faculty. All of our programs are ABET-accredited. The Department's core strengths include:

  • Advanced Manufacturing and Design
  • Materials for Extreme Conditions
  • Biomechanics and Medical Technologies
  • Modeling and Simulation
  • Energy System Technologies
  • Quantitative and In Situ Materials Characterization

MEMS faculty are not only world-renowned academicians, but accessible teachers who seek to inspire and encourage their students to succeed.  

The Department also has access to more than 20 laboratory facilities that enhance the learning process through first-rate technology and hands-on experience.

Each year, the Department graduates approximately 90 mechanical and materials science engineers, with nearly 100% placed in excellent careers with industry and research facilities around the globe.

Aug
23
2019

Five Pitt engineering faculty capture nearly $3 million in total NSF CAREER awards for 2018/2019

Chemical & Petroleum, Civil & Environmental, Electrical & Computer, MEMS, Diversity

PITTSBURGH (August 23, 2019) … Five faculty members from the University of Pittsburgh’s Swanson School of Engineering have been named CAREER Award recipients by the National Science Foundation (NSF). Recognized as the NSF’s most competitive award for junior faculty, the grants total nearly $3 million in funding both for research and community engagement. The CAREER program “recognizes faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations.” The five awards – one each in the departments of Bioengineering, Chemical and Petroleum, Civil and Environmental, Electrical and Computer, and Mechanical Engineering and Materials Science – ties the record from 2017 for the most received by Pitt and Swanson School faculty in a single NSF CAREER funding announcement. “Federal funding for academic research is extremely competitive, especially for faculty just beginning their academic careers. Receiving five prestigious NSF CAREER Awards in one cycle is a reflection of our winners’ distinctive research and support by their respective departments and the Swanson School,” noted David Vorp, PhD, the Swanson School’s Associate Dean for Research. He added, “Since a CAREER Award is also focused on community engagement, this is an opportunity for our faculty and their graduate students to promote STEM to children in the area, especially in underserved populations, and we will be working with them to develop impactful outreach programs.”Dr. Vorp also noted that the Swanson School’s recent success with CAREER awards can be attributed to a number of factors, including the School’s Center for Faculty Excellence, directed by Prof. Anne Robertson, and the CAREER writing group developed and run by Julie Myers-Irvin, PhD, the Swanson School’s Grants Developer. “Participating faculty acknowledge that the writing group focus on early preparation, group comradery, technical feedback, and discussions of grantsmanship practices attribute to more well-rounded proposals,” Dr. Myers-Irvin says.The award recipients include:Murat Akcakaya, Assistant Professor of Electrical & Computer Engineering, with Carla A. Mazefsky, Associate Professor of Psychiatry and Psychology ($550,000)Title:Toward a Biologically Informed Intervention for Emotionally Dysregulated Adolescents and Adults with Autism Spectrum Disorder (#1844885)Summary: Although clinical techniques are used to help patients with Autism Spectrum Disorder (ASD) respond to stress and other factors, none are known to couple with technology that could monitor brain response in real time and provide the patient with feedback. Drs. Akcakaya and Mazefsky are developing a new intervention using electroencephalography (EEG)-guided, non-invasive brain-computer interface (BCI) technology could complement clinical treatments and improve emotion regulation in people with ASD.Dr. Akcakaya will also develop courses related to the research and outreach activities to promote STEM and ASD research to K-12 populations and the broader public. Outreach will focus especially on individuals with ASD, their families, and caretakers. Susan Fullerton, Assistant Professor of Chemical and Petroleum Engineering ($540,000)Title:Scaling Electrolytes to a Single Monolayer for Low-Power Ion-Gated Electronics with Unconventional Characteristics (#1847808)Summary: Two-dimensional (2D) materials are being explored for their exciting new physics that can impart novel functionalities in application spaces such as information storage, neuromorphic computing, and hardware security. Dr. Fullerton and her group invented a new type of ion-containing material, or electrolyte, which is only a single molecule thick. This “monolayer electrolyte” will ultimately introduce new functions that can be used by the electronic materials community to explore the fundamental properties of new semiconductor materials and to increase storage capacity, decrease power consumption, and vastly accelerate processing speed.The NSF award will support a PhD student and postdoctoral researcher, as well as an outreach program to inspire curiosity and engagement of K-12 and underrepresented students in materials for next-generation electronics. Specifically, Dr. Fullerton has developed an activity where students can watch the polymer electrolytes used in this study crystallize in real-time using an inexpensive camera attached to a smart phone or iPad. The CAREER award will allow Dr. Fullerton to provide this microscope to classrooms so that the teachers can continue exploring with their students. Tevis Jacobs, Assistant Professor of Mechanical Engineering and Materials Science ($500,000)Title:Understanding Nanoparticle Adhesion to Guide the Surface Engineering of Supporting Structures (#1844739) Summary: Although far thinner than a human hair, metal nanoparticles play an important role in advanced industries and technologies from electronics and pharmaceuticals to catalysts and sensors. Nanoparticles can be as small as ten atoms in diameter, and their small size makes them especially susceptible to coarsening with continued use, which reduces functionality and degrades performance. Dr. Jacobs will utilize electron microscopy to develop new methods to measure the attachment and stability of nanoparticles on surfaces under various conditions, allowing researchers to enhance both surfaces and nanoparticles in tandem to work more effectively together.Additionally, Dr. Jacobs and his lab group will engage with the University of Pittsburgh School of Education and a local elementary school to create and nationally disseminate surface engineering-focused curricular units for sixth- to eighth-grade students and professional development training modules for teachers. Carla Ng, Assistant Professor of Civil and Environmental Engineering ($500,000)Title:Harnessing biology to tackle fluorinated alkyl substances in the environment (#1845336) Summary: Per- and polyfluorinated alkyl substances (PFAS) are man-made chemicals that are useful in a variety of industries because of their durability, but do not naturally break down in the environment or human body. Because of their useful oil- and water-repellent properties, PFAS are used in many consumer products, industrial processes, and in firefighting foams, but unfortunately, their manufacturing and widespread use has contributed to the undesired release of these chemicals into the environment. With evidence showing that PFAS may have adverse effects on human health, Dr. Ng wants to further investigate the potential impacts of these chemicals and identify ways to remove them from the environment. She plans to elevate K-12 and undergraduate education through the use of collaborative model-building in a game-like environment. Dr. Ng in particular will utilize the agent-based modeling language NetLogo, a freely available and accessible model-building tool that can be equally powerful for cutting edge research or for students exploring new STEM concepts in science and engineering. Gelsy Torres-Oviedo, Assistant Professor of Bioengineering ($805,670)Title: Novel human-in-the loop approach to increase locomotor learning Summary: Many stroke survivors who suffer from impaired gait benefit from rehabilitation using robotics. Unfortunately, motor improvements following training are not maintained in the patient’s daily life. Dr. Torres-Oviedo hypothesizes that some of these individuals have difficulty perceiving their asymmetric movement, and she will use this project to characterize this deficit and indicate if split-belt walking - in which the legs move at different speeds - can correct it. Her lab will track how patients with brain lesions perceive asymmetries in their gait. They will then measure how their perception is adjusted once their movements are adapted in the split-belt environment. In the second part of this study, the lab will use these data and a unique method to manipulate how people perceive their movement and create the illusion of error-free performance during split-belt walking. The goal is for the changes in their movements to be sustained in the patient’s daily life. Dr. Torres-Oviedo will also use this project as a way to increase the participation of students from underrepresented minorities (URM) in science and engineering. She will recruit, mentor, and prepare URM students from K-12 and college to pursue advanced education, with the ultimate goal of broadening the professional opportunities for this population. ###

Aug
15
2019

Strong Pitt Showing at Gordon Research Conference on High Temperature Corrosion

MEMS

PITTSBURGH (August 15, 2019) … Students in Brian Gleeson’s research group in the Department of Mechanical Engineering and Materials Science (MEMS) at the University of Pittsburgh Swanson School of Engineering very recently participated in the Gordon Research Seminar (GRS) and Conference (GRC) on High Temperature Corrosion in New London, NH. The GRS is limited to young investigators in the field and was held during the weekend of the start of the GRC, which was held July 21-26, 2019. One student presented his work at the Seminar, and two students won awards in the poster competition. According to Gleeson, Tack Chaired Professor and Department Chair of MEMS, the strong showing by his students at such prestigious meetings is a credit to the high quality of their research coupled with hard work and unbridled enthusiasm. Patrick Brennan, a PhD student, gave a presentation entitled “Reproducing and Elucidating the Mechanisms of Rapid CaSO4-Deposit-Induced Degradation of Nickel-Based Superalloys.” This work is in collaboration with G.E. Aviation and supported by the United States Office of Naval Research. His research addresses novel modes of degradation induced by CaSO4 deposits. There were 60 attendees at the Seminar and Patrick was one of 11 speakers. Grace Vanessa de León Nope, a PhD student, received second place in the Gordon Research Seminar poster competition, where a total of 49 posters were presented. Her poster was titled  “Oxidation Behavior of Inconel 625 Made by Additive Manufacturing.”  The work presented is supported by the National Science Foundation. Her research focuses on understanding the differences in oxidation behavior between conventional alloys and those processed using additive manufacturing methods. Emily Kistler, a PhD student, won the Best Student Poster Award at the GRC out of a field of 71 student posters (included were postdoctoral researchers). Her poster was titled “A New Solid-State Mode of Hot Corrosion Occurring Below 700°C: Mechanistic Understanding and Mitigation Strategies.”  The research is being conducted in collaboration with Pratt & Whitney and supported by the United State Office of Naval Research and an NDSEG Fellowship. The work addressed the mechanism of a recently identified form of low-temperature deposit-induced corrosion, occurring in aero and marine engines, and identified mitigation methods to the attack. At the same GRC, Professor Gleeson gave a presentation entitled “Beyond Conventional Hot Corrosion.”  Also attending the GRC and presenting posters were Professors Judith Yang (ChemE) and Wissam Saidi (MEMS). There are over 300 GRCs and associated GRSs, providing an international forum for the presentation and discussion of frontier research in a given topic area of the biological, chemical, physical, and engineering sciences. ###
Brian Gleeson, PhD
Jul
29
2019

MEMS PhD Student Takes Home Third Place in Poster Competition

MEMS, Student Profiles

Yunhao Zhao, a PhD student working under Dr. Wei Xiong in the Physical Metallurgy and Materials Design Laboratory placed third in a poster presentation competition at the 5th World Congress on Integrated Computational Materials Engineering (ICME) 2019 Conference.  The conference was hosted by The Minerals, Metals and Materials Society (TMS) in Indianapolis, IN this past July.   According to TMS, the IMCE, “convenes leading researchers and practitioners of ICME to share the latest knowledge and advances in the discipline. This congress is the recognized hub of interaction among software developers and process engineers along the entire production chain, as well as for materials scientists and engineers developing new materials.” Zhao’s PhD thesis is titled “Phase Transformation Modeling and Post-Processing Design for Additively Manufactured Inconel 718 Superalloys.” He aims to employ ICME methods to predict the microstructures of additively manufactured Inconel 718 and design post-processing strategies to improve the properties of the alloys.
Meagan Lenze
Jul
11
2019

Pitt Engineers Receive $1 Million to Develop Better Quality Control for 3D Printing Turbine Components

MEMS

PITTSBURGH (July 11, 2019) — The U.S. Department of Energy, through its University Turbine Systems Research program, has awarded researchers at the University of Pittsburgh’s Swanson School of Engineering $802,400 to find an effective quality assurance method for additive manufacturing, or 3D printing, of new-generation gas turbine components. The three-year project has received additional support from the University of Pittsburgh ($200,600), resulting in a total grant of $1,003,000. Xiayun (Sharon) Zhao, PhD, assistant professor of mechanical engineering and materials science at Pitt, will lead the research, working with Albert To, associate professor of mechanical engineering and materials science at Pitt, and Richard W. Neu, professor in the Georgia Institute of Technology’s School of Mechanical Engineering. The team will use machine learning to develop a cost-effective method for rapidly evaluating, either in-process or offline, the hot gas path turbine components (HGPTCs) that are created with laser powder bed fusion (LPBF) additive manufacturing (AM) technology. “LPBF AM is capable of making complex metal components with reduced cost of material and time. There is a desire to employ the appealing AM technology to fabricate sophisticated HGPTCs that can withstand higher working temperature for next-generation turbines. However, because there’s a possibility that the components will have porous defects and be prone to detrimental thermomechanical fatigue, it’s critical to have a good quality assurance method before putting them to use,” explains Dr. Zhao. “The quality assurance framework we are developing will immensely reduce the cost of testing and quality control and enhance confidence in adopting the LPBF process to fabricate demanding HGPTCs.” ANSYS will serve as an industrial partner in this project.
Maggie Pavlick
Jul
11
2019

New Superomniphobic Glass Soars High on Butterfly Wings Using Machine Learning

Chemical & Petroleum, Industrial, MEMS

PITTSBURGH (July 11, 2019) — Glass for technologies like displays, tablets, laptops,  smartphones, and solar cells need to pass light through, but could benefit from a surface that repels water, dirt, oil, and other liquids. Researchers from the University of Pittsburgh’s Swanson School of Engineering have created a nanostructure glass that takes inspiration from the wings of the glasswing butterfly to create a new type of glass that is not only very clear across a wide variety of wavelengths and angles, but is also antifogging. The team recently published a paper detailing their findings: “Creating Glasswing-Butterfly Inspired Durable Antifogging Omniphobic Supertransmissive, Superclear Nanostructured Glass Through Bayesian Learning and Optimization” in Materials Horizons (doi:10.1039/C9MH00589G). They recently presented this work at the ICML conference in the “Climate Change: How Can AI Help?” workshop. The nanostructured glass has random nanostructures, like the glasswing butterfly wing, that are smaller than the wavelengths of visible light. This allows the glass to have a very high transparency of 99.5% when the random nanostructures are on both sides of the glass. This high transparency can reduce the brightness and power demands on displays that could, for example, extend battery life. The glass is antireflective across higher angles, improving viewing angles. The glass also has low haze, less than 0.1%, which results in very clear images and text. “The glass is superomniphobic, meaning it repels a wide variety of liquids such as orange juice, coffee, water, blood, and milk,” explains Sajad Haghanifar, lead author of the paper and doctoral candidate in industrial engineering at Pitt. “The glass is also anti-fogging, as water condensation tends to easily roll off the surface, and the view through the glass remains unobstructed. Finally, the nanostructured glass is durable from abrasion due to its self-healing properties—abrading the surface with a rough sponge damages the coating, but heating it restores it to its original function.” Natural surfaces like lotus leaves, moth eyes and butterfly wings display omniphobic properties that make them self-cleaning, bacterial-resistant and water-repellant—adaptations for survival that evolved over millions of years. Researchers have long sought inspiration from nature to replicate these properties in a synthetic material, and even to improve upon them. While the team could not rely on evolution to achieve these results, they instead utilized machine learning. “Something significant about the nanostructured glass research, in particular, is that we partnered with SigOpt to use machine learning to reach our final product,” says Paul Leu, PhD, associate professor of industrial engineering, whose lab conducted the research. Dr. Leu holds secondary appointments in mechanical engineering and materials science and chemical engineering. “When you create something like this, you don’t start with a lot of data, and each trial takes a great deal of time. We used machine learning to suggest variables to change, and it took us fewer tries to create this material as a result.” “Bayesian optimization and active search are the ideal tools to explore the balance between transparency and omniphobicity efficiently, that is, without needing thousands of fabrications, requiring hundreds of days.” said Michael McCourt, PhD, research engineer at SigOpt. Bolong Cheng, PhD, fellow research engineer at SigOpt, added, “Machine learning and AI strategies are only relevant when they solve real problems; we are excited to be able to collaborate with the University of Pittsburgh to bring the power of Bayesian active learning to a new application.” “Creating Glasswing-Butterfly Inspired Durable Antifogging Omniphobic Supertransmissive, Superclear Nanostrcutured Glass Through Bayesian Learning and Optimization” was coauthored by Sajad Haghanifar, and Paul Leu, from Pitt’s Swanson School of Engineering; Michael McCourt and Bolong Cheng from SigOpt; and Paul Ohodnicki and Jeffrey Wuenschell from the U.S. Department of Energy’s National Energy Laboratory. The project was supported in part by a National Science Foundation CAREER Award.
Maggie Pavlick
Mechanical Engineering program
Materials Science program
Engineering Science program
Department News
Nuclear Engineering Program
Graduate Seminars

Upcoming Events


back
view more