about

(2010) NSF fellowship to attend summer school "Mechanics of Soft Materials" at Northwestern University in 2010.

(2002) Silver award winner of Graduate Student Award at 2002 spring MRS meeting.

Ph.D., Materials Science (minor in Computer Science), California Institute of Technology, 2002

M.S., Materials Science, California Institute of Technology, 1999

M.E., Materials Science and Engineering, Tsinghua University, 1997

B.E., Materials Science and Engineering, Tsinghua University, 1995

Huang, Z., Li, T., Li, B., Dong, Q., Smith, J., Li, S., Xu, L., Wang, G., Chi, M., & Hu, L. (2024). Tailoring Local Chemical Ordering via Elemental Tuning in High-Entropy Alloys. J Am Chem Soc, 146(3), 2167-2173.American Chemical Society (ACS). doi: 10.1021/jacs.3c12048.

Chang, J., Wang, G., Chang, X., Yang, Z., Wang, H., Li, B., Zhang, W., Kovarik, L., Du, Y., Orlovskaya, N., Xu, B., Wang, G., & Yang, Y. (2023). Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. NATURE COMMUNICATIONS, 14(1), 1346.Springer Science and Business Media LLC. doi: 10.1038/s41467-023-37011-z.

Chen, X., Shan, W., Wu, D., Patel, S.B., Cai, N., Li, C., Ye, S., Liu, Z., Hwang, S., Zakharov, D.N., Boscoboinik, J.A., Wang, G., & Zhou, G. (2023). Atomistic mechanisms of water vapor-induced surface passivation. Sci Adv, 9(44), eadh5565.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.adh5565.

Fang, Y., Ohodnicki, P.R., & Wang, G. (2023). A machine learning based computational approach for prediction of cation distribution in spinel crystal. JOURNAL OF CHEMICAL PHYSICS, 158(19).AIP Publishing. doi: 10.1063/5.0146056.

Fang, Z., Li, B., Tan, S., Mao, S., & Wang, G. (2023). Revealing shear-coupled migration mechanism of a mixed tilt-twist grain boundary at atomic scale. ACTA MATERIALIA, 258, 119237.Elsevier BV. doi: 10.1016/j.actamat.2023.119237.

Mullurkara, S., Fang, Y., Taddei, K.M., Wang, G., & Ohodnicki, P. (2023). Experimental and Theoretical Investigation of Cation Site Occupation and Magnetic Ordering in CoFe2O4. IEEE Transactions on Magnetics, 59(11), 1-5.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/tmag.2023.3294018.

Wang, X., Zheng, S., Deng, C., Weinberger, C.R., Wang, G., & Mao, S.X. (2023). In Situ Atomic-Scale Observation of 5-Fold Twin Formation in Nanoscale Crystal under Mechanical Loading. NANO LETTERS, 23(2), 514-522.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.2c03852.

Wang, Y., Li, B., Xue, B., Libretto, N., Xie, Z., Shen, H., Wang, C., Raciti, D., Marinkovic, N., Zong, H., Xie, W., Li, Z., Zhou, G., Vitek, J., Chen, J.G., Miller, J., Wang, G., Wang, C. (2023). CO electroreduction on single-atom copper. SCIENCE ADVANCES, 9(30), eade3557.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.ade3557.

Wu, Z.Y., Chen, F.Y., Lie, B., Yu, S.W., Finfrock, Y.Z., Meira, D.M., Yan, Q.Q., Zhu, P., Chen, M.X., Song, T.W., Yin, Z., Liang, H.W., Zhang, S., Wang, G., & Wang, H. (2023). Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. NATURE MATERIALS, 22(1), 100-+.Springer Science and Business Media LLC. doi: 10.1038/s41563-022-01380-5.

Yang, M., Li, B., Li, S., Dong, Q., Huang, Z., Zheng, S., Fang, Y., Zhou, G., Chen, X., Zhu, X., Li, T., Chi, M., Wang, G., Hu, L., & Ren, Z.J. (2023). Highly Selective Electrochemical Nitrate to Ammonia Conversion by Dispersed Ru in a Multielement Alloy Catalyst. NANO LETTERS, 23(16), 7733-7742.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.3c01978.

Zeng, Y., Liang, J., Li, B., Yu, H., Zhang, B., Reeves, K.S., Cullen, D.A., Li, X., Su, D., Wang, G., Zhong, S., Xu, H., Macauley, N., & Wu, G. (2023). Pt Nanoparticles on Atomic-Metal-Rich Carbon for Heavy-Duty Fuel Cell Catalysts: Durability Enhancement and Degradation Behavior in Membrane Electrode Assemblies. ACS Catalysis, 13(18), 11871-11882.American Chemical Society (ACS). doi: 10.1021/acscatal.3c03270.

Zeng, Y., Liang, J., Li, C., Qiao, Z., Li, B., Hwang, S., Kariuki, N.N.N., Chang, C.W., Wang, M., Lyons, M., Lee, S., Feng, Z., Wang, G., Xie, J., Cullen, D.A.A., Myers, D.J.J., & Wu, G. (2023). Regulating Catalytic Properties and Thermal Stability of Pt and PtCo Intermetallic Fuel-Cell Catalysts via Strong Coupling Effects between Single-Metal Site-Rich Carbon and Pt. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 145(32), 17643-17655.American Chemical Society (ACS). doi: 10.1021/jacs.3c03345.

Zhang, S., & Wang, G. (2023). First principles prediction of yield strength of body centered cubic structured high entropy alloys. Materials Today Communications, 36, 106684.Elsevier BV. doi: 10.1016/j.mtcomm.2023.106684.

Zheng, T., Wang, J., Xia, Z., Wang, G., & Duan, Z. (2023). Spin-dependent active centers in Fe-N-C oxygen reduction catalysts revealed by constant-potential density functional theory. JOURNAL OF MATERIALS CHEMISTRY A, 11(36), 19360-19373.Royal Society of Chemistry (RSC). doi: 10.1039/d3ta03271j.

Chen, X., Zhang, S., Li, C., Liu, Z., Sun, X., Cheng, S., Zakharov, D.N., Hwang, S., Zhu, Y., Fang, J., Wang, G., & Zhou, G. (2022). Composition-dependent ordering transformations in Pt-Fe nanoalloys. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 119(14), e2117899119.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.2117899119.

Cui, M., Yang, C., Hwang, S., Li, B., Dong, Q., Wu, M., Xie, H., Wang, X., Wang, G., & Hu, L. (2022). Rapid Atomic Ordering Transformation toward Intermetallic Nanoparticles. NANO LETTERS, 22(1), 255-262.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.1c03714.

de Leon Nope, G., Wang, G., Alvarado-Orozco, J.M., & Gleeson, B. (2022). Role of Elemental Segregation on the Oxidation Behavior of Additively Manufactured Alloy 625. JOM, 74(4), 1698-1706.Springer Science and Business Media LLC. doi: 10.1007/s11837-022-05200-8.

Fang, Z., Xiao, J., Tan, S., Deng, C., Wang, G., & Mao, S.X. (2022). Atomic-scale observation of dynamic grain boundary structural transformation during shear-mediated migration. SCIENCE ADVANCES, 8(45), eabn3785.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.abn3785.

He, Y., She, D., Liu, Z., Wang, X., Zhong, L., Wang, C., Wang, G., & Mao, S.X. (2022). Atomistic observation on diffusion-mediated friction between single-asperity contacts. NATURE MATERIALS, 21(2), 173-+.Springer Science and Business Media LLC. doi: 10.1038/s41563-021-01091-3.

Li, B., Holby, E.F., & Wang, G. (2022). Mechanistic insights into metal, nitrogen doped carbon catalysts for oxygen reduction: progress in computational modeling. JOURNAL OF MATERIALS CHEMISTRY A, 10(45), 23959-23972.Royal Society of Chemistry (RSC). doi: 10.1039/d2ta05991f.

Li, Y., Adli, N.M., Shan, W., Wang, M., Zachman, M.J., Hwang, S., Tabassum, H., Karakalos, S., Feng, Z., Wang, G., Li, Y.C., & Wu, G. (2022). Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. ENERGY & ENVIRONMENTAL SCIENCE, 15(5), 2108-2119.Royal Society of Chemistry (RSC). doi: 10.1039/d2ee00318j.

Li, Y., Shan, W., Zachman, M.J., Wang, M., Hwang, S., Tabassum, H., Yang, J., Yang, X., Karakalos, S., Feng, Z., Wang, G., & Wu, G. (2022). Atomically Dispersed Dual-Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 61(28), e202205632.Wiley. doi: 10.1002/anie.202205632.

Liu, S., Li, C., Zachman, M.J., Zeng, Y., Yu, H., Li, B., Wang, M., Braaten, J., Liu, J., Meyer, H.M., Lucero, M., Kropf, A.J., Alp, E.E., Gong, Q., Shi, Q., Feng, Z., Xu, H., Wang, G., Myers, D.J., Xie, J., Cullen, D.A., Litster, S., & Wu, G. (2022). Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. NATURE ENERGY, 7(7), 652-663.Springer Science and Business Media LLC. doi: 10.1038/s41560-022-01062-1.

Wang, X., Liu, Z., He, Y., Tan, S., Wang, G., & Mao, S.X. (2022). Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy. NATURE NANOTECHNOLOGY, 17(7), 737-+.Springer Science and Business Media LLC. doi: 10.1038/s41565-022-01126-z.

Wang, X., Liu, Z., He, Y., Tan, S., Wang, G., & Mao, S.X. (2022). Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy (May, 10.1038/s41565-022-01126-z, 2022). NATURE NANOTECHNOLOGY, 17(7), 799.Springer Science and Business Media LLC. doi: 10.1038/s41565-022-01167-4.

Yao, Y., Dong, Q., Brozena, A., Luo, J., Miao, J., Chi, M., Wang, C., Kevrekidis, I.G., Ren, Z.J., Greeley, J., Wang, G., Anapolsky, A., & Hu, L. (2022). High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. SCIENCE, 376(6589), 151-+.American Association for the Advancement of Science (AAAS). doi: 10.1126/science.abn3103.

Zhang, W., Chang, J., Wang, G., Li, Z., Wang, M., Zhu, Y., Li, B., Zhou, H., Wang, G., Gu, M., Feng, Z., & Yang, Y. (2022). Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. ENERGY & ENVIRONMENTAL SCIENCE, 15(4), 1573-1584.Royal Society of Chemistry (RSC). doi: 10.1039/d1ee03972e.

Chang, J., Wang, G., Wang, M., Wang, Q., Li, B., Zhou, H., Zhu, Y., Zhang, W., Omer, M., Orlovskaya, N., Ma, Q., Gu, M., Feng, Z., Wang, G., & Yang, Y. (2021). Improving Pd-N-C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. NATURE ENERGY, 6(12), 1144-1153.Springer Science and Business Media LLC. doi: 10.1038/s41560-021-00940-4.

Chang, J., Wang, G., Yang, Z., Li, B., Wang, Q., Kuliiev, R., Orlovskaya, N., Gu, M., Du, Y., Wang, G., & Yang, Y. (2021). Dual-Doping and Synergism toward High-Performance Seawater Electrolysis. ADVANCED MATERIALS, 33(33), e2101425.Wiley. doi: 10.1002/adma.202101425.

Cui, M., Yang, C., Li, B., Dong, Q., Wu, M., Hwang, S., Xie, H., Wang, X., Wang, G., & Hu, L. (2021). High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction. Advanced Energy Materials, 11(3).Wiley. doi: 10.1002/aenm.202002887.

Guo, L., Hwang, S., Li, B., Yang, F., Wang, M., Chen, M., Yang, X., Karakalos, S.G., Cullen, D.A., Feng, Z., Wang, G., Wu, G., & Xu, H. (2021). Promoting Atomically Dispersed MnN4 Sites via Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS NANO, 15(4), 6886-6899.American Chemical Society (ACS). doi: 10.1021/acsnano.0c10637.

Guo, Y., Cai, X., Shen, S., Wang, G., & Zhang, J. (2021). Computational prediction and experimental evaluation of nitrate reduction to ammonia on rhodium. JOURNAL OF CATALYSIS, 402, 1-9.Elsevier BV. doi: 10.1016/j.jcat.2021.08.016.

Guo, Y., Li, B., Shen, S., Luo, L., Wang, G., & Zhang, J. (2021). Potential-Dependent Mechanistic Study of Ethanol Electro-oxidation on Palladium. ACS APPLIED MATERIALS & INTERFACES, 13(14), 16602-16610.American Chemical Society (ACS). doi: 10.1021/acsami.1c04513.

Guo, Y., Wang, G., Shen, S., Wei, G., Xia, G., & Zhang, J. (2021). On scaling relations of single atom catalysts for electrochemical ammonia synthesis. Applied Surface Science, 550, 149283.Elsevier BV. doi: 10.1016/j.apsusc.2021.149283.

He, Y., Shi, Q., Shan, W., Li, X., Kropf, A.J., Wegener, E.C., Wright, J., Karakalos, S., Su, D., Cullen, D.A., Wang, G., Myers, D.J., & Wu, G. (2021). Dynamically Unveiling Metal-Nitrogen Coordination during Thermal Activation to Design High-Efficient Atomically Dispersed CoN4 Active Sites. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 60(17), 9516-9526.Wiley. doi: 10.1002/anie.202017288.

Li, J., Zhang, S., Li, C., Zhu, Y., Boscoboinik, J.A., Tong, X., Sadowski, J.T., Wang, G., & Zhou, G. (2021). Coupling between bulk thermal defects and surface segregation dynamics. PHYSICAL REVIEW B, 104(8).American Physical Society (APS). doi: 10.1103/PhysRevB.104.085408.

Li, T., Yao, Y., Huang, Z., Xie, P., Liu, Z., Yang, M., Gao, J., Zeng, K., Brozena, A.H., Pastel, G., Jiao, M., Dong, Q., Dai, J., Li, S., Zong, H., Chi, M., Luo, J., Mo, Y., Wang, G., Wang, C., Shahbazian-Yassar, R., & Hu, L. (2021). Denary oxide nanoparticles as highly stable catalysts for methane combustion. NATURE CATALYSIS, 4(1), 62-70.Springer Science and Business Media LLC. doi: 10.1038/s41929-020-00554-1.

Li, T., Yao, Y., Huang, Z., Xie, P., Liu, Z., Yang, M., Gao, J., Zeng, K., Brozena, A.H., Pastel, G., Jiao, M., Dong, Q., Dai, J., Li, S., Zong, H., Chi, M., Luo, J., Mo, Y., Wang, G., Wang, C., Shahbazian-Yassar, R., & Hu, L. (2021). Denary oxide nanoparticles as highly stable catalysts for methane combustion (vol 4, pg 62, 2021). NATURE CATALYSIS, 4(5), 439.Springer Science and Business Media LLC. doi: 10.1038/s41929-021-00613-1.

Li, X., He, Y., Cheng, S., Li, B., Zeng, Y., Xie, Z., Meng, Q., Ma, L., Kisslinger, K., Tong, X., Hwang, S., Yao, S., Li, C., Qiao, Z., Shan, C., Zhu, Y., Xie, J., Wang, G., Wu, G., & Su, D. (2021). Atomic Structure Evolution of Pt-Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. ADVANCED MATERIALS, 33(48), e2106371.Wiley. doi: 10.1002/adma.202106371.

Liu, K., Zhang, S., Wu, D., Luo, L., Sun, X., Chen, X., Zakharov, D., Cheng, S., Zhu, Y., Yang, J.C., Wang, G., & Zhou, G. (2021). Effect of surface steps on chemical ordering in the subsurface of Cu(Au) solid solutions. PHYSICAL REVIEW B, 103(3).American Physical Society (APS). doi: 10.1103/PhysRevB.103.035401.

Mohd Adli, N., Shan, W., Hwang, S., Samarakoon, W., Karakalos, S., Li, Y., Cullen, D.A., Su, D., Feng, Z., Wang, G., & Wu, G. (2021). Engineering Atomically Dispersed FeN4 Active Sites for CO2 Electroreduction. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 60(2), 1022-1032.Wiley. doi: 10.1002/anie.202012329.

Qiao, Z., Wang, C., Li, C., Zeng, Y., Hwang, S., Li, B., Karakalos, S., Park, J., Kropf, A.J., Wegener, E.C., Gong, Q., Xu, H., Wang, G., Myers, D.J., Xie, J., Spendelow, J.S., & Wu, G. (2021). Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. ENERGY & ENVIRONMENTAL SCIENCE, 14(9), 4948-4960.Royal Society of Chemistry (RSC). doi: 10.1039/d1ee01675j.

Shan, W., & Wang, G. (2021). Enhancing Catalytic Properties of Iron- and Nitrogen-Doped Carbon for Nitrogen Reduction through Structural Distortion: A Density Functional Theory Study. JOURNAL OF PHYSICAL CHEMISTRY C, 125(29), 16004-16012.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.1c04510.

Stecker, C., Liu, Z., Hieulle, J., Zhang, S., Ono, L.K., Wang, G., & Qi, Y. (2021). Atomic Scale Investigation of the CuPc-MAPbX3 Interface and the Effect of Non-Stoichiometric Perovskite Films on Interfacial Structures. ACS NANO, 15(9), 14813-14821.American Chemical Society (ACS). doi: 10.1021/acsnano.1c04867.

Xie, H., Liu, Y., Li, N., Li, B., Kline, D.J., Yao, Y., Zachariah, M.R., Wang, G., Su, D., Wang, C., & Hu, L. (2021). High-temperature-pulse synthesis of ultrathin-graphene-coated metal nanoparticles. Nano Energy, 80, 105536.Elsevier BV. doi: 10.1016/j.nanoen.2020.105536.

Chen, M., Li, X., Yang, F., Li, B., Stracensky, T., Karakalos, S., Mukerjee, S., Jia, Q., Su, D., Wang, G., Wu, G., & Xu, H. (2020). Atomically Dispersed MnN4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS CATALYSIS, 10(18), 10523-10534.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02490.

He, Y., Guo, H., Hwang, S., Yang, X., He, Z., Braaten, J., Karakalos, S., Shan, W., Wang, M., Zhou, H., Feng, Z., More, K.L., Wang, G., Su, D., Cullen, D.A., Fei, L., Litster, S., & Wu, G. (2020). Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High-Power PGM-Free Cathodes in Fuel Cells. ADVANCED MATERIALS, 32(46), e2003577.Wiley. doi: 10.1002/adma.202003577.

Holby, E.F., Wang, G., & Zelenay, P. (2020). Acid Stability and Demetalation of PGM-Free ORR Electrocatalyst Structures from Density Functional Theory: A Model for "Single-Atom Catalyst" Dissolution. ACS CATALYSIS, 10(24), 14527-14539.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02856.

Mukherjee, S., Yang, X., Shan, W., Samarakoon, W., Karakalos, S., Cullen, D.A., More, K., Wang, M., Feng, Z., Wang, G., & Wu, G. (2020). Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O. SMALL METHODS, 4(6).Wiley. doi: 10.1002/smtd.201900821.

Pan, F., Li, B., Sarnello, E., Fei, Y., Feng, X., Gang, Y., Xiang, X., Fang, L., Li, T., Hu, Y.H., Wang, G., & Li, Y. (2020). Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction. ACS CATALYSIS, 10(19), 10803-10811.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02499.

Pan, F., Li, B., Sarnello, E., Fei, Y., Gang, Y., Xiang, X., Du, Z., Zhang, P., Wang, G., Nguyen, H.T., Li, T., Hu, Y.H., Zhou, H.C., & Li, Y. (2020). Atomically Dispersed Iron-Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO2 Reduction. ACS NANO, 14(5), 5506-5516.American Chemical Society (ACS). doi: 10.1021/acsnano.9b09658.

Pan, F., Li, B., Sarnello, E., Hwang, S., Gang, Y., Feng, X., Xiang, X., Adli, N.M., Li, T., Su, D., Wu, G., Wang, G., & Li, Y. (2020). Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. NANO ENERGY, 68, 104384.Elsevier BV. doi: 10.1016/j.nanoen.2019.104384.

Qiao, Y., Liu, Y., Liu, Y., Dong, Q., Zhong, G., Wang, X., Liu, Z., Wang, X., He, S., Zhou, W., Wang, G., Wang, C., & Hu, L. (2020). Thermal Radiation Synthesis of Ultrafine Platinum Nanoclusters toward Methanol Oxidation. SMALL METHODS, 4(9).Wiley. doi: 10.1002/smtd.202000265.

Sun, X., Zhu, W., Wu, D., Liu, Z., Chen, X., Yuan, L., Wang, G., Sharma, R., & Zhou, G. (2020). Atomic-Scale Mechanism of Unidirectional Oxide Growth. ADVANCED FUNCTIONAL MATERIALS, 30(4).Wiley. doi: 10.1002/adfm.201906504.

Xie, X., He, C., Li, B., He, Y., Cullen, D.A., Wegener, E.C., Kropf, A.J., Martinez, U., Cheng, Y., Engelhard, M.H., Bowden, M.E., Song, M., Lemmon, T., Li, X.S., Nie, Z., Liu, J., Myers, D.J., Zelenay, P., Wang, G., Wu, G., Ramani, V., & Shao, Y. (2020). Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. NATURE CATALYSIS, 3(12), 1044-1054.Springer Science and Business Media LLC. doi: 10.1038/s41929-020-00546-1.

Xu, Z., Zhou, Z., Li, B., Wang, G., & Leu, P.W. (2020). Identification of Efficient Active Sites in Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction. JOURNAL OF PHYSICAL CHEMISTRY C, 124(16), 8689-8696.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.9b11090.

Yang, C., Ko, B.H., Hwang, S., Liu, Z., Yao, Y., Luc, W., Cui, M., Malkani, A.S., Li, T., Wang, X., Dai, J., Xu, B., Wang, G., Su, D., Jiao, F., & Hu, L. (2020). Overcoming immiscibility toward bimetallic catalyst library. Sci Adv, 6(17), eaaz6844.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaz6844.

Yao, Y., Liu, Z., Xie, P., Huang, Z., Li, T., Morris, D., Finfrock, Z., Zhou, J., Jiao, M., Gao, J., Mao, Y., Miao, J.J., Zhang, P., Shahbazian-Yassar, R., Wang, C., Wang, G., & Hu, L. (2020). Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. SCIENCE ADVANCES, 6(11), eaaz0510.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaz0510.

Zeng, Y., Priest, C., Wang, G., & Wu, G. (2020). Restoring the Nitrogen Cycle by Electrochemical Reduction of Nitrate: Progress and Prospects. SMALL METHODS, 4(12).Wiley. doi: 10.1002/smtd.202000672.

Zheng, Y., Liu, Z., Lei, Y., Zhang, C., Chen, H., Wang, G., & Yang, Z.G. (2020). First-Principles Calculated Structures and Carbon Binding Energies of Σ11 {10(1)over-bar1}/{10(1)over-bar(1)over-bar} Tilt Grain Boundaries in Corundum Structured Metal Oxides. OXIDATION OF METALS, 94(1-2), 37-49.Springer Science and Business Media LLC. doi: 10.1007/s11085-020-09977-4.

Zou, L., Cao, P., Lei, Y., Zakharov, D., Sun, X., House, S.D., Luo, L., Li, J., Yang, Y., Yin, Q., Chen, X., Li, C., Qin, H., Stach, E.A., Yang, J.C., Wang, G., & Zhou, G. (2020). Atomic-scale phase separation induced clustering of solute atoms. NATURE COMMUNICATIONS, 11(1), 3934.Springer Science and Business Media LLC. doi: 10.1038/s41467-020-17826-w.

Zou, L., He, Y., Liu, Z., Jia, H., Zhu, J., Zheng, J., Wang, G., Li, X., Xiao, J., Liu, J., Zhang, J.G., Chen, G., & Wang, C. (2020). Unlocking the passivation nature of the cathode-air interfacial reactions in lithium ion batteries. NATURE COMMUNICATIONS, 11(1), 3204.Springer Science and Business Media LLC. doi: 10.1038/s41467-020-17050-6.

He, N., Shan, W., Wang, J., Pan, Q., Qu, J., Wang, G., & Gao, W. (2019). Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors. JOURNAL OF MATERIALS CHEMISTRY A, 7(12), 6869-6876.Royal Society of Chemistry (RSC). doi: 10.1039/c8ta12337c.

He, Y., Hwang, S., Cullen, D.A., Uddin, M.A., Langhorst, L., Li, B., Karakalos, S., Kropf, A.J., Wegener, E.C., Sokolowski, J., Chen, M., Myers, D., Su, D., More, K.L., Wang, G., Litster, S., & Wu, G. (2019). Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. ENERGY & ENVIRONMENTAL SCIENCE, 12(1), 250-260.Royal Society of Chemistry (RSC). doi: 10.1039/c8ee02694g.

Li, J., Zhang, H., Samarakoon, W., Shan, W., Cullen, D.A., Karakalos, S., Chen, M., Gu, D., More, K.L., Wang, G., Feng, Z., Wang, Z., & Wu, G. (2019). Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 58(52), 18971-18980.Wiley. doi: 10.1002/anie.201909312.

Liu, K., Qiao, Z., Hwang, S., Liu, Z., Zhang, H., Su, D., Xu, H., Wu, G., & Wang, G. (2019). Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. APPLIED CATALYSIS B-ENVIRONMENTAL, 243, 195-203.Elsevier BV. doi: 10.1016/j.apcatb.2018.10.034.

Pan, F., Li, B., Deng, W., Du, Z., Gang, Y., Wang, G., & Li, Y. (2019). Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition. APPLIED CATALYSIS B-ENVIRONMENTAL, 252, 240-249.Elsevier BV. doi: 10.1016/j.apcatb.2019.04.025.

Pan, F., Li, B., Xiang, X., Wang, G., & Li, Y. (2019). Efficient CO2 Electroreduction by Highly Dense and Active Pyridinic Nitrogen on Holey Carbon Layers with Fluorine Engineering. ACS CATALYSIS, 9(3), 2124-2133.American Chemical Society (ACS). doi: 10.1021/acscatal.9b00016.

Pan, F., Zhang, H., Liu, Z., Cullen, D., Liu, K., More, K., Wu, G., Wang, G., & Li, Y. (2019). Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction. JOURNAL OF MATERIALS CHEMISTRY A, 7(46), 26231-26237.Royal Society of Chemistry (RSC). doi: 10.1039/c9ta08862h.

Qiao, Z., Hwang, S., Li, X., Wang, C., Samarakoon, W., Karakalos, S., Li, D., Chen, M., He, Y., Wang, M., Liu, Z., Wang, G., Zhou, H., Feng, Z., Su, D., Spendelow, J.S., & Wu, G. (2019). 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. ENERGY & ENVIRONMENTAL SCIENCE, 12(9), 2830-2841.Royal Society of Chemistry (RSC). doi: 10.1039/c9ee01899a.

Stecker, C., Liu, K., Hieulle, J., Ohmann, R., Liu, Z., Ono, L.K., Wang, G., & Qi, Y. (2019). Surface Defect Dynamics in Organic-Inorganic Hybrid Perovskites: From Mechanism to Interfacial Properties. ACS NANO, 13(10), 12127-12136.American Chemical Society (ACS). doi: 10.1021/acsnano.9b06585.

Xie, P., Yao, Y., Huang, Z., Liu, Z., Zhang, J., Li, T., Wang, G., Shahbazian-Yassar, R., Hu, L., & Wang, C. (2019). Highly efficient decomposition of ammonia using high-entropy alloy catalysts. NATURE COMMUNICATIONS, 10(1), 4011.Springer Science and Business Media LLC. doi: 10.1038/s41467-019-11848-9.

Zheng, Y., Bidabadi, M.H.S., Wang, G., Zhang, C., Chen, H., & Yang, Z. (2019). Coordination of Pre-oxidation Time and Temperature for a Better Corrosion Resistance to CO2 at 550°C. OXIDATION OF METALS, 91(5-6), 657-675.Springer Science and Business Media LLC. doi: 10.1007/s11085-019-09901-5.

Zheng, Y., Bidabadi, M.H.S., Wang, G., Zhang, C., Chen, H., & Yang, Z.G. (2019). Comparison of Microstructural Evolution of Oxides Formed on F91 Martensitic Steel Upon Breakaway Oxidation at 700°C in Air and CO2. OXIDATION OF METALS, 91(3-4), 463-482.Springer Science and Business Media LLC. doi: 10.1007/s11085-019-09893-2.

Zou, L., Li, J., Liu, Z., Wang, G., Manthiram, A., & Wang, C. (2019). Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nat Commun, 10(1), 3447.Springer Science and Business Media LLC. doi: 10.1038/s41467-019-11299-2.

Li, J., Chen, M., Cullen, D.A., Hwang, S., Wang, M., Li, B., Liu, K., Karakalos, S., Lucero, M., Zhang, H., Lei, C., Xu, H., Sterbinsky, G.E., Feng, Z., Su, D., More, K.L., Wang, G., Wang, Z., & Wu, G. (2018). Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. NATURE CATALYSIS, 1(12), 935-945.Springer Science and Business Media LLC. doi: 10.1038/s41929-018-0164-8.

Li, Y., Gao, T., Yao, Y., Liu, Z., Kuang, Y., Chen, C., Song, J., Xu, S., Hitz, E.M., Liu, B., Jacob, R.J., Zachariah, M.R., Wang, G., & Hu, L. (2018). In Situ "Chainmail Catalyst" Assembly in Low-Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation. ADVANCED ENERGY MATERIALS, 8(25).Wiley. doi: 10.1002/aenm.201801289.

Mukherjee, S., Cullen, D.A., Karakalos, S., Liu, K., Zhang, H., Zhao, S., Xu, H., More, K.L., Wang, G., & Wu, G. (2018). Metal-organic framework- derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. NANO ENERGY, 48, 217-226.Elsevier BV. doi: 10.1016/j.nanoen.2018.03.059.

Pan, F., Zhang, H., Liu, K., Cullen, D., More, K., Wang, M., Feng, Z., Wang, G., Wu, G., & Li, Y. (2018). Unveiling Active Sites of CO2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS CATALYSIS, 8(4), 3116-3122.American Chemical Society (ACS). doi: 10.1021/acscatal.8b00398.

Wang, L., Gao, W., Liu, Z., Zeng, Z., Liu, Y., Giroux, M., Chi, M., Wang, G., Greeley, J., Pan, X., & Wang, C. (2018). Core-Shell Nanostructured Cobalt-Platinum Electrocatalysts with Enhanced Durability. ACS CATALYSIS, 8(1), 35-42.American Chemical Society (ACS). doi: 10.1021/acscatal.7b02501.

Wiezorek, J.M., Zou, L., Yang, C., Lei, Y., Zakharov, D., Su, D., Yin, Q., Li, J., Liu, Z., Stach, E., Yang, J., Qi, L., Wang, G., & Zhou, G. (2018). SUPPLEMENTARY INFORMATION Dislocation nucleation facilitated by atomic segregation DOI: 10.1038/NMAT5034. doi: 10.1038/NMAT5034.

Xiao, X., Wang, G., Zhang, M., Wang, Z., Zhao, R., & Wang, Y. (2018). Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor. Ionics, 24(8), 2435-2443.Springer Science and Business Media LLC. doi: 10.1007/s11581-017-2354-9.

Yang, J., Wang, G., Jiao, X., Gu, Y., Liu, Q., & Li, Y. (2018). Current-Assisted Diffusion Bonding of Extruded Ti-22Al-25Nb Alloy by Spark Plasma Sintering: Interfacial Microstructure and Mechanical Properties. Journal of Materials Engineering and Performance, 27(6), 3035-3043.Springer Science and Business Media LLC. doi: 10.1007/s11665-018-3398-3.

Zou, L., Liu, Z., Zhao, W., Jia, H., Zheng, J., Yang, Y., Wang, G., Zhang, J.G., & Wang, C. (2018). Solid-Liquid Interfacial Reaction Trigged Propagation of Phase Transition from Surface into Bulk Lattice of Ni-Rich Layered Cathode. CHEMISTRY OF MATERIALS, 30(20), 7016-7026.American Chemical Society (ACS). doi: 10.1021/acs.chemmater.8b01958.

Zou, L., Saidi, W.A., Lei, Y., Liu, Z., Li, J., Li, L., Zhu, Q., Zakharov, D., Stach, E.A., Yang, J.C., Wang, G., & Zhou, G. (2018). Segregation induced order-disorder transition in Cu(Au) surface alloys. ACTA MATERIALIA, 154, 220-227.Elsevier BV. doi: 10.1016/j.actamat.2018.05.040.

Zou, L., Yang, C., Lei, Y., Zakharov, D., Wiezorek, J.M.K., Su, D., Yin, Q., Li, J., Liu, Z., Stach, E.A., Yang, J.C., Qi, L., Wang, G., & Zhou, G. (2018). Dislocation nucleation facilitated by atomic segregation. NATURE MATERIALS, 17(1), 56-+.Springer Science and Business Media LLC. doi: 10.1038/NMAT5034.

Zou, L., Zhao, W., Liu, Z., Jia, H., Zheng, J., Wang, G., Yang, Y., Zhang, J.G., & Wang, C. (2018). Revealing Cycling Rate-Dependent Structure Evolution in Ni-Rich Layered Cathode Materials. ACS ENERGY LETTERS, 3(10), 2433-2440.American Chemical Society (ACS). doi: 10.1021/acsenergylett.8b01490.

Gray, C.M., Saravanan, K., Wang, G., & Keith, J.A. (2017). Quantifying solvation energies at solid/liquid interfaces using continuum solvation methods. MOLECULAR SIMULATION, 43(5-6), 420-427.Informa UK Limited. doi: 10.1080/08927022.2016.1273525.

Liu, K., Wu, G., & Wang, G. (2017). Role of Local Carbon Structure Surrounding FeN4 Sites in Boosting the Catalytic Activity for Oxygen Reduction. JOURNAL OF PHYSICAL CHEMISTRY C, 121(21), 11319-11324.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.7b00913.

Liu, Z., & Wang, G. (2017). Surface magnetism of L10 CoPt alloy: first principles predictions. J Phys Condens Matter, 29(35), 355801.IOP Publishing. doi: 10.1088/1361-648X/aa7b5b.

Liu, Z., & Wang, G. (2017). Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles. Physical Review B, 96(22).American Physical Society (APS). doi: 10.1103/physrevb.96.224412.

Yan, X., Liu, K., Wang, T., You, Y., Liu, J., Wang, P., Pan, X., Wang, G., Luo, J., & Zhu, J. (2017). Atomic interpretation of high activity on transition metal and nitrogen-doped carbon nanofibers for catalyzing oxygen reduction. JOURNAL OF MATERIALS CHEMISTRY A, 5(7), 3336-3345.Royal Society of Chemistry (RSC). doi: 10.1039/c6ta09462g.

Gray, C., Lei, Y., & Wang, G. (2016). Charged vacancy diffusion in chromium oxide crystal: DFT and DFT plus U predictions. JOURNAL OF APPLIED PHYSICS, 120(21).AIP Publishing. doi: 10.1063/1.4970882.

Li, J., Wang, G., & Zhou, G. (2016). Surface segregation phenomena in extended and nanoparticle surfaces of Cu-Au alloys. SURFACE SCIENCE, 649, 39-45.Elsevier BV. doi: 10.1016/j.susc.2016.01.013.

Liu, K., Kattel, S., Mao, V., & Wang, G. (2016). Electrochemical and Computational Study of Oxygen Reduction Reaction on Nonprecious Transition Metal/Nitrogen Doped Carbon Nanofibers in Acid Medium. The Journal of Physical Chemistry C, 120(3), 1586-1596.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.5b10334.

Liu, K., Lei, Y., Chen, R., & Wang, G. (2016). Oxygen Electroreduction on M-N4 Macrocyclic Complexes. In Electrochemistry of N4 Macrocyclic Metal Complexes. (pp. 1-39).Springer International Publishing. doi: 10.1007/978-3-319-31172-2_1.

Liu, Z., Lei, Y., & Wang, G. (2016). First-principles computation of surface segregation in L10 CoPt magnetic nanoparticles. JOURNAL OF PHYSICS-CONDENSED MATTER, 28(26), 266002.IOP Publishing. doi: 10.1088/0953-8984/28/26/266002.

Liu, Z., Olivares, R.O., Lei, Y., Garcia, C.I., & Wang, G. (2016). Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium microalloyed HSLA steels. JOURNAL OF ALLOYS AND COMPOUNDS, 679, 293-301.Elsevier BV. doi: 10.1016/j.jallcom.2016.04.057.

Shan, X., Charles, D.S., Lei, Y., Qiao, R., Wang, G., Yang, W., Feygenson, M., Su, D., & Teng, X. (2016). Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat Commun, 7(1), 13370.Springer Science and Business Media LLC. doi: 10.1038/ncomms13370.

Chi, M., Wang, C., Lei, Y., Wang, G., Li, D., More, K.L., Lupini, A., Allard, L.F., Markovic, N.M., & Stamenkovic, V.R. (2015). Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing. NATURE COMMUNICATIONS, 6(1), 8925.Springer Science and Business Media LLC. doi: 10.1038/ncomms9925.

Lei, Y., & Wang, G. (2015). Linking diffusion kinetics to defect electronic structure in metal oxides: Charge-dependent vacancy diffusion in alumina. Scripta Materialia, 101, 20-23.Elsevier BV. doi: 10.1016/j.scriptamat.2015.01.008.

Liu, Z., Lei, Y., Gray, C., & Wang, G. (2015). Examination of Solid-Solution Phase Formation Rules for High Entropy Alloys from Atomistic Monte Carlo Simulations. JOM, 67(10), 2364-2374.Springer Science and Business Media LLC. doi: 10.1007/s11837-015-1508-3.

Yuan, W., Jiang, Y., Wang, Y., Kattel, S., Zhang, Z., Chou, L.Y., Tsung, C.K., Wei, X., Li, J., Zhang, X., Wang, G., Mao, S.X., Zhang, Z. (2015). In situ observation of facet-dependent oxidation of graphene on platinum in an environmental TEM. CHEMICAL COMMUNICATIONS, 51(2), 350-353.Royal Society of Chemistry (RSC). doi: 10.1039/c4cc07838a.

Bao, L., Zang, J., Wang, G., & Li, X. (2014). Atomic-scale imaging of cation ordering in inverse spinel Zn2SnO4 nanowires. Nano Lett, 14(11), 6505-6509.American Chemical Society (ACS). doi: 10.1021/nl503077y.

Fang, H.Z., Shang, S.L., Wang, Y., Liu, Z.K., Alfonso, D., Alman, D.E., Shin, Y.K., Zou, C.Y., van Duin, A.C.T., Lei, Y.K., & Wang, G.F. (2014). First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques. JOURNAL OF APPLIED PHYSICS, 115(4).AIP Publishing. doi: 10.1063/1.4861380.

Kattel, S., & Wang, G. (2014). Reaction Pathway for Oxygen Reduction on FeN4 Embedded Graphene. J Phys Chem Lett, 5(3), 452-456.American Chemical Society (ACS). doi: 10.1021/jz402717r.

Kattel, S., & Wang, G. (2014). Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface. J Chem Phys, 141(12), 124713.AIP Publishing. doi: 10.1063/1.4896604.

Sun, Y., Liu, J., Blom, D., Koley, G., Duan, Z., Wang, G., & Li, X. (2014). Atomic-scale imaging correlation on the deformation and sensing mechanisms of SnO2 nanowires. APPLIED PHYSICS LETTERS, 105(24).AIP Publishing. doi: 10.1063/1.4904912.

Duan, Z., & Wang, G. (2013). Comparison of Reaction Energetics for Oxygen Reduction Reactions on Pt(100), Pt(111), Pt/Ni(100), and Pt/Ni(111) Surfaces: A First-Principles Study. The Journal of Physical Chemistry C, 117(12), 6284-6292.American Chemical Society (ACS). doi: 10.1021/jp400388v.

Kattel, S., & Wang, G. (2013). A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe, Co, or Ni) clusters between graphitic pores. Journal of Materials Chemistry A, 1(36), 10790.Royal Society of Chemistry (RSC). doi: 10.1039/c3ta12142a.

Kattel, S., Duan, Z., & Wang, G. (2013). Density Functional Theory Study of an Oxygen Reduction Reaction on a Pt3Ti Alloy Electrocatalyst. The Journal of Physical Chemistry C, 117(14), 7107-7113.American Chemical Society (ACS). doi: 10.1021/jp400158r.

Lei, Y., Gong, Y., Duan, Z., & Wang, G. (2013). Density functional calculation of activation energies for lattice and grain boundary diffusion in alumina. PHYSICAL REVIEW B, 87(21).American Physical Society (APS). doi: 10.1103/PhysRevB.87.214105.

Liu, K., Lei, Y., & Wang, G. (2013). Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes. J Chem Phys, 139(20), 204306.AIP Publishing. doi: 10.1063/1.4832696.

Lv, H., Lei, Y., Datta, A., & Wang, G. (2013). Influence of surface segregation on magnetic properties of FePt nanoparticles. APPLIED PHYSICS LETTERS, 103(13).AIP Publishing. doi: 10.1063/1.4822172.

Sang, X., Kulovits, A., Wang, G., & Wiezorek, J. (2013). Validation of density functionals for transition metals and intermetallics using data from quantitative electron diffraction. JOURNAL OF CHEMICAL PHYSICS, 138(8), 084504.AIP Publishing. doi: 10.1063/1.4792436.

Datta, A., Duan, Z., & Wang, G. (2012). Influence of surface segregation on the elastic property of Pt-Ni alloy nanowires. COMPUTATIONAL MATERIALS SCIENCE, 55, 81-84.Elsevier BV. doi: 10.1016/j.commatsci.2011.12.017.

He, H., Lei, Y., Xiao, C., Chu, D., Chen, R., & Wang, G. (2012). Molecular and Electronic Structures of Transition-Metal Macrocyclic Complexes as Related to Catalyzing Oxygen Reduction Reactions: A Density Functional Theory Study. JOURNAL OF PHYSICAL CHEMISTRY C, 116(30), 16038-16046.American Chemical Society (ACS). doi: 10.1021/jp303312r.

Sang, X., Kulovits, A., Wang, G., & Wiezorek, J. (2012). High precision electronic charge density determination for L10-ordered γ-TiAl by quantitative convergent beam electron diffraction. PHILOSOPHICAL MAGAZINE, 92(35), 4408-4424.Informa UK Limited. doi: 10.1080/14786435.2012.709324.

Wang, C., Li, D., Chi, M., Pearson, J., Rankin, R.B., Greeley, J., Duan, Z., Wang, G., van der Vliet, D., More, K.L., Markovic, N.M., & Stamenkovic, V.R. (2012). Rational Development of Ternary Alloy Electrocatalysts. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 3(12), 1668-1673.American Chemical Society (ACS). doi: 10.1021/jz300563z.

Duan, Z., & Wang, G. (2011). A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Phys Chem Chem Phys, 13(45), 20178-20187.Royal Society of Chemistry (RSC). doi: 10.1039/c1cp21687b.

Duan, Z., & Wang, G. (2011). Monte Carlo simulation of surface segregation phenomena in extended and nanoparticle surfaces of Pt-Pd alloys. J Phys Condens Matter, 23(47), 475301.IOP Publishing. doi: 10.1088/0953-8984/23/47/475301.

Wang, C., Chi, M., Li, D., Strmcnik, D., van der Vliett, D., Wang, G., Komanicky, V., Chang, K.C., Paulikas, A.P., Tripkovic, D., Pearson, J., More, K.L., Markovic, N.M., & Stamenkovic, V.R. (2011). Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 133(36), 14396-14403.American Chemical Society (ACS). doi: 10.1021/ja2047655.

Wang, C., Chi, M., Li, D., van der Vliet, D., Wang, G., Lin, Q., Mitchell, J.F., More, K.L., Markovic, N.M., & Stamenkovic, V.R. (2011). Synthesis of Homogeneous Pt-Bimetallic Nanoparticles as Highly Efficient Electrocatalysts. ACS CATALYSIS, 1(10), 1355-1359.American Chemical Society (ACS). doi: 10.1021/cs200328z.

Wang, C., Chi, M., Wang, G., van der Vliet, D., Li, D., More, K., Wang, H., Schlueter, J.A., Markovic, N.M., & Stamenkovic, V.R. (2011). Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1‐x Nanoparticles. Advanced Functional Materials, 21(1), 147-152.Wiley. doi: 10.1002/adfm.201001138.

Wang, C., van der Vliet, D., More, K.L., Zaluzec, N.J., Peng, S., Sun, S., Daimon, H., Wang, G., Greeley, J., Pearson, J., Paulikas, A.P., Karapetrov, G., Strmcnik, D., Markovic, N.M., & Stamenkovic, V.R. (2011). Multimetallic Au/FePt3 Nanoparticles as Highly Durable Electrocatalyst. Nano Letters, 11(3), 919-926.American Chemical Society (ACS). doi: 10.1021/nl102369k.

Wang, G., Chen, A., Zhang, Z., Duan, Z., & Yokota, H. (2011). Modelling the molecular transportation of subcutaneously injected salubrinal. Biomedical Engineering and Computational Biology, 3, 25-32.

Yang, Y., Wang, G., & Li, X. (2011). Water molecule-induced stiffening in ZnO nanobelts. Nano Lett, 11(7), 2845-2848.American Chemical Society (ACS). doi: 10.1021/nl201237x.

Zhang, Y., Duan, Z., Xiao, C., & Wang, G. (2011). Density functional theory calculation of platinum surface segregation energy in Pt3Ni (111) surface doped with a third transition metal. SURFACE SCIENCE, 605(15-16), 1577-1582.Elsevier BV. doi: 10.1016/j.susc.2011.05.032.

Zhong, L., Liu, X.H., Wang, G.F., Mao, S.X., & Huang, J.Y. (2011). Multiple-Stripe Lithiation Mechanism of Individual SnO2 Nanowires in a Flooding Geometry. PHYSICAL REVIEW LETTERS, 106(24), 248302.American Physical Society (APS). doi: 10.1103/PhysRevLett.106.248302.

Duan, Z., Zhong, J., & Wang, G. (2010). Modeling surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal. The Journal of Chemical Physics, 133(11), 114701.AIP Publishing. doi: 10.1063/1.3490792.

Wang, C., Wang, G., van der Vliet, D., Chang, K.C., Markovic, N.M., & Stamenkovic, V.R. (2010). Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Physical Chemistry Chemical Physics, 12(26), 6933.Royal Society of Chemistry (RSC). doi: 10.1039/c000822b.

Chen, R., Li, H., Chu, D., & Wang, G. (2009). Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions. JOURNAL OF PHYSICAL CHEMISTRY C, 113(48), 20689-20697.American Chemical Society (ACS). doi: 10.1021/jp906408y.

KART, H.H., WANG, G., KARAMAN, I., & ÇAĞIN, T. (2009). MOLECULAR DYNAMICS STUDY OF THE COALESCENCE OF EQUAL AND UNEQUAL SIZED Cu NANOPARTICLES. International Journal of Modern Physics C, 20(02), 179-196.World Scientific Pub Co Pte Lt. doi: 10.1142/s0129183109013534.

Sun, Y., Liang, J., Xu, Z.H., Wang, G., & Li, X. (2009). In Situ Observation of Small-Scale Deformation in a Lead-Free Solder Alloy. Journal of Electronic Materials, 38(3), 400-409.Springer Science and Business Media LLC. doi: 10.1007/s11664-008-0600-7.

Fowler, B., Lucas, C.A., Omer, A., Wang, G., Stamenković, V.R., & Marković, N.M. (2008). Segregation and stability at Pt3Ni(111) surfaces and Pt75Ni25 nanoparticles. Electrochimica Acta, 53(21), 6076-6080.Elsevier BV. doi: 10.1016/j.electacta.2007.11.063.

Sun, Y., Liang, J., Xu, Z.H., Wang, G., & Li, X. (2008). Nanoindentation for measuring individual phase mechanical properties of lead free solder alloy. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 19(6), 514-521.Springer Science and Business Media LLC. doi: 10.1007/s10854-007-9374-6.

Wang, G., & Li, X. (2008). Predicting Young’s modulus of nanowires from first-principles calculations on their surface and bulk materials. Journal of Applied Physics, 104(11), 113517.AIP Publishing. doi: 10.1063/1.3033634.

Wang, G., Ramesh, N., Hsu, A., Chu, D., & Chen, R. (2008). Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. MOLECULAR SIMULATION, 34(10-15), 1051-1056.Informa UK Limited. doi: 10.1080/08927020802258690.

Baskes, M.I., Hu, S.Y., Valone, S.M., Wang, G.F., & Lawson, A.C. (2007). Atomistic simulations of Ga atom ordering in Pu 5 at. % Ga alloys. Journal of Computer-Aided Materials Design, 14(3), 379-388.Springer Science and Business Media LLC. doi: 10.1007/s10820-007-9056-y.

Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., & Marković, N.M. (2007). Improved Oxygen Reduction Activity on Pt 3 Ni(111) via Increased Surface Site Availability. Science, 315(5811), 493-497.American Association for the Advancement of Science (AAAS). doi: 10.1126/science.1135941.

Stamenkovic, V.R., Mun, B.S., Arenz, M., Mayrhofer, K.J.J., Lucas, C.A., Wang, G., Ross, P.N., & Markovic, N.M. (2007). Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials, 6(3), 241-247.Springer Science and Business Media LLC. doi: 10.1038/nmat1840.

Wang, G., & Cagin, T. (2007). Electronic structure of the thermoelectric materialsBi2Te3andSb2Te3from first-principles calculations. Physical Review B, 76(7), 075201.American Physical Society (APS). doi: 10.1103/physrevb.76.075201.

Wang, G., & Li, X. (2007). Size dependency of the elastic modulus of ZnO nanowires: Surface stress effect. Applied Physics Letters, 91(23), 231912.AIP Publishing. doi: 10.1063/1.2821118.

Lillard, R.S., Wang, G.F., & Baskes, M.I. (2006). The Role of Metallic Bonding in the Crystallographic Pitting of Magnesium. Journal of The Electrochemical Society, 153(9), B358.The Electrochemical Society. doi: 10.1149/1.2218108.

Wang, G., & Cagin, T. (2006). Investigation of effective mass of carriers in Bi2Te3̸Sb2Te3 superlattices via electronic structure studies on its component crystals. Applied Physics Letters, 89(15).AIP Publishing. doi: 10.1063/1.2360191.

Wang, G., Van Hove, M.A., Ross, P.N., & Baskes, M.I. (2005). Surface Structures of Cubo-Octahedral Pt−Mo Catalyst Nanoparticles from Monte Carlo Simulations. The Journal of Physical Chemistry B, 109(23), 11683-11692.American Chemical Society (ACS). doi: 10.1021/jp050116n.

Wang, G., Van Hove, M.A., Ross, P.N., & Baskes, M.I. (2005). Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles. The Journal of Chemical Physics, 122(2), 024706.AIP Publishing. doi: 10.1063/1.1828033.

WANG, G., VANHOVE, M., ROSS, P., & BASKES, M. (2005). Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M=Ni,Re,Mo). Progress in Surface Science, 79(1), 28-45.Elsevier BV. doi: 10.1016/j.progsurf.2005.09.003.

Maiti, P.K., Çaǧın, T., Wang, G., & Goddard, W.A. (2004). Structure of PAMAM Dendrimers:  Generations 1 through 11. Macromolecules, 37(16), 6236-6254.American Chemical Society (ACS). doi: 10.1021/ma035629b.

Wang, G., Strachan, A., Ça in, T., & GoddardIII, W.A. (2004). Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation dynamics: application to bcc tantalum. Modelling and Simulation in Materials Science and Engineering, 12(4), S371-S389.IOP Publishing. doi: 10.1088/0965-0393/12/4/s06.

Wang, G., Van Hove, M.A., Ross, P.N., & Baskes, M.I. (2004). Monte Carlo simulations of segregation in Pt-Re catalyst nanoparticles. The Journal of Chemical Physics, 121(11), 5410-5422.AIP Publishing. doi: 10.1063/1.1781151.

Wang, G., Strachan, A., Çağın, T., & Goddard, W.A. (2003). Atomistic simulations of kinks in1/2a111screw dislocations in bcc tantalum. Physical Review B, 68(22).American Physical Society (APS). doi: 10.1103/physrevb.68.224101.

Wang, G., Strachan, A., Çağın, T., & Goddard, W.A. (2003). Role of core polarization curvature of screw dislocations in determining the Peierls stress in bcc Ta: A criterion for designing high-performance materials. Physical Review B, 67(14).American Physical Society (APS). doi: 10.1103/physrevb.67.140101.

Cagin, T., Wang, G., Martin, R., Zamanakos, G., Vaidehi, N., Mainz, D.T., & Goddard, W.A. (2001). Multiscale modeling and simulation methods with applications to dendritic polymers. Computational and Theoretical Polymer Science, 11(5), 345-356.Elsevier BV. doi: 10.1016/s1089-3156(01)00026-5.

Cuitiño, A.M., Stainier, L., Wang, G., Strachan, A., Çağin, T., Goddard III, W.A., & Ortiz, M. (2001). A multiscale approach for modeling crystalline solids. Journal of Computer-Aided Materials Design, 8(2/3), 127-149.Springer Science and Business Media LLC. doi: 10.1023/a:1020012431230.

Wang, G., Strachan, A., Çağin, T., & Goddard III, W.A. (2001). Kinks in the a/2 〈111〉 screw dislocation in Ta. Journal of Computer-Aided Materials Design, 8(2/3), 117-125.Springer Science and Business Media LLC. doi: 10.1023/a:1020038515726.

Wang, G., Strachan, A., Cagin, T., & Goddard, W.A. (2001). Molecular dynamics simulations of 1/2 a〈1 1 1〉 screw dislocation in Ta. Materials Science and Engineering: A, 309-310, 133-137.Elsevier BV. doi: 10.1016/s0921-5093(00)01739-1.

Çagin, T., Wang, G., Martin, R., Breen, N., & Goddard, W.A. (2000). Molecular modelling of dendrimers for nanoscale applications. Nanotechnology, 11(2), 77-84.IOP Publishing. doi: 10.1088/0957-4484/11/2/307.

Pellessier, J., Gong, X., Li, B., Zhang, J., Gang, Y., Hambleton, K., Podder, C., Gao, Z., Zhou, H., Wang, G., Pan, H., & Li, Y. PTFE nanocoating on Cu nanoparticles through dry processing to enhance electrochemical conversion of CO2 towards multi-carbon products. Journal of Materials Chemistry A, 11(47), 26252-26264.Royal Society of Chemistry (RSC). doi: 10.1039/d3ta05787a.

Li, Y., Pan, F., Wang, G., & Wu, G. (2019). Unveiling active sites of CO2 reduction on nitrogen coordinated single atomic iron and cobalt catalysts. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 257.

Chi, M., Wang, C., Wang, G., & More, K. (2016). Probing surface structural and chemical evolution at the atomic scale in bi-metallic catalysts using in situ STEM. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 251.

Ordonez, R., Wang, G., Liu, Z., Smiley, J., Moses, R., & Garcia, C.I. (2014). Microstructural and computer modeling study of the annealing behavior of vanadium bearing HSLA steel after cold rolling. In Materials Science and Technology Conference and Exhibition 2014, MS and T 2014, 1, (pp. 415-427).

Sang, X., Kulovits, A.K., Wang, G., & Wiezorek, J.M.K. (2014). Charge Density Determination for Al-rich Composition L1o-ordered gamma-TiAl by Convergent Beam Electron Diffraction. In Microscopy and Microanalysis, 20(S3), (pp. 1492-1493).Oxford University Press (OUP). doi: 10.1017/s1431927614009192.

Datta, A., Duan, Z., & Wang, G. (2012). Influence of Surface Segregation on the Mechanical Property of Metallic Alloy Nanowires. In MRS Proceedings, 1424, (pp. 127-132).Springer Science and Business Media LLC. doi: 10.1557/opl.2012.679.

Duan, Z., Datta, A., & Wang, G. (2012). First-principles transition state study of oxygen reduction reaction on Pt (111) surface modified by subsurface transition metals. In MRS Proceedings, 1384, (pp. 81-87).Springer Science and Business Media LLC. doi: 10.1557/opl.2012.460.

Wang, G. (2007). Toward the nanoscale design of catalysts for fuel cells: A computational approach. 233rd American Chemical Society National Meeting.Chicago, Illinois.

Lillard, R.S., Wang, G., & Baskes, M. (2006). The Role of Metallic Bonding in the Crystallographic Pitting of Magnesium. In ECS Transactions, 1(4), (pp. 381-389).The Electrochemical Society. doi: 10.1149/1.2215522.

Wang, G., Van Hove, M.A., Ross, P.N., & Baskes, M.I. (2004). Atomistic simulations of fee Pt 75Ni 25 and Pt 75Re 25 cubo-octahedral nanoparticles. In Materials Research Society Symposium Proceedings, 818, (pp. 89-94).

Wang, G., Strachan, A., ÇaǦin, T., & Goddard, W.A. (2001). Atomistic Simulation of kinks for 1/2a<111> Screw Dislocation in Ta. In MRS Proceedings, 677.Springer Science and Business Media LLC. doi: 10.1557/proc-677-aa7.30.

Cagin, T., Miklis, P.J., Wang, G., Zamanakos, G., Martin, R., Li, H., Mainz, D.T., Nagarajan, V., & Goddard, W.A. (1999). Recent advances in simulation of dendritic polymers. In Materials Research Society Symposium - Proceedings, 543, (pp. 299-310).

Research interests

bimetallic catalyst nanoparticles