Improving Bridge Assessment through the Integration of Conventional Visual Inspection, Non-Destructive Evaluation, and Structural Health Monitoring Data

University of Pittsburgh – IRISE (Dr. Amir Alavi)
Rutgers University – CAIT (Dr. Frank Moon)
Wiss, Janney, Elstner Associates Inc. – (Dr. Saeed Babanajad)
The Research Problem

- Large costs and relatively long intervals between inspections for large scale of civil infrastructure systems caused by access issues

- Current assessment approaches are generally subjective in nature and provide only qualitative data reflective of surface or near-surface condition

- Huge gap exists in the establishment of effective approaches to fuse the collected massive NDE and SHM data

- A more comprehensive integration framework to integrate the results taken from NDE/SHM/visual inspection is needed
Project Objectives

- Establish a framework capable of leveraging emerging SHM and NDE techniques to provide improved performance assessment of bridges.

- Addressing the principal challenges associated with studying the service life of bridge structures:
 - Long-time scales (which requires accelerated aging)
 - The diverse outputs related to bridge condition (in terms of data collected through SHM, NDE, and visual inspection)

- Identifying the synergies among bridge degradation, remaining service life, and the results taken from the multimodal sensing technologies (SHM, NDE, and UAV-based)
Project Approach/Deliverables

Tasks:
- Collection of High-Resolution and High-Temporal Data from the BEAST Specimen
- Processing of Collected Data
- Advanced Statistical Data Analytics
- Development of Recommendations

Deliverables:
- Final Report
- Technical Articles
- Technical Events (TRB, NEBPP)
Schedule/Status

- The start dates for the project was December 1, 2019
- Due to COVID-19 pandemic, the Rutgers BEAST operation paused since March 1, 2020
- The second round of data obtained from the BEAST testing facility showed no deterioration after exposing the specimen to 800K loading cycles
- The team acquired massive bridge deck deterioration data from Utah State University and the University of Waterloo, as well as concrete structures in Pittsburgh
- A vision-based crack, spall and delamination detection software program has been developed accordingly\(^1,2\)
- The BEAST or any other bridge deck data could be feed into the algorithm directly

<table>
<thead>
<tr>
<th>Months</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Task 1: Collection of Data from the BEAST Specimen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2: Processing of Collected Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3: Advanced Statistical Data Analytics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4: Development of Recommendations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft Final Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application of Research Results

- Pitt Bridge Condition Assessment System (PittBCAS): Automated detection and quantification of cracks, spalls and delaminatration in concrete structures using deep learning.

- Spalling and delamination densities are the two main parameters in the current PennDOT rating system for concrete bridge decks.

- The crack density is also most useful for the prediction of useful life of bridge decks.

- Images taken manually by the PennDOT personnel or via their UAVs can readily be fed into the PittBCAS software to calculate the densities of the cracked, spalled and delaminated areas.

- The calculation speed is about 5 seconds per square foot of the deck.

Condition Rating for Concrete Bridge Deck Evaluation:

<table>
<thead>
<tr>
<th>Category Classification</th>
<th>Rating</th>
<th>Deck Area Visible Spalls</th>
<th>Delamination</th>
<th>Electrical Potential</th>
<th>Deck Area</th>
<th>Chloride Content (#/CY)</th>
<th>Deck Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Deterioration</td>
<td>7</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>none</td>
<td>0.0</td>
<td>none</td>
</tr>
<tr>
<td>Light Deterioration</td>
<td>8</td>
<td>none</td>
<td>none</td>
<td>0.0 < E.P. < 0.35</td>
<td>none</td>
<td>0 < C.C. < 1</td>
<td>none</td>
</tr>
<tr>
<td>Moderate Deterioration</td>
<td>7</td>
<td>none</td>
<td>< 2%</td>
<td>0.35 < E.P. < 0.45</td>
<td>≤ 5%</td>
<td>0 < C.C. < 2</td>
<td>none</td>
</tr>
<tr>
<td>Moderate Deterioration</td>
<td>6</td>
<td>< 2% spalls or sum of all deteriorated and/or contaminated deck concrete (2%/(C X CY)) < 20%</td>
<td>none</td>
<td>0 < C.C. < 1</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive Deterioration</td>
<td>5</td>
<td>< 3% spalls or sum of all deteriorated and/or contaminated deck concrete 20% to 40%</td>
<td>none</td>
<td>0.35 < E.P. < 0.45</td>
<td>≤ 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive Deterioration</td>
<td>4</td>
<td>> 3% spalls or sum of all deteriorated and/or contaminated deck concrete 40% to 60%</td>
<td>none</td>
<td>< 0.35</td>
<td>0 < C.C. < 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive Deterioration</td>
<td>3</td>
<td>> 3% spalls or sum of all deteriorated and/or contaminated deck concrete > 60%</td>
<td>none</td>
<td>≤ 0.35</td>
<td>none</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Rating 9 - No deck cracking exists. Rating 8 - Some minor deck cracking is evident.
Pitt Bridge Condition Assessment System (PittBCAS)

Click to open the interface for Crack and Spall Evaluation

Click to open the interface for Delamination Evaluation

University of Pittsburgh | Swanson School of Engineering
Crack and Spall Evaluation

- Input the model directory
- Input the image directory
- Input the output image directory

Input Setup

ML_Model
Input Image Directory
Output Directory

Input Parameters

Break Image size: (The same as ML_model training inputs)

_output

Output Results

Crack Damage:
- Crack Region (%)
- Total Crack Length (pixel)
- Crack Density (in/ft)

Spall Damage:
- Spall Region (%)

Output:
- Crack region density
- Total crack length
- Crack density
- Spall region density
Delamination Evaluation

Input the model directory
Input the image directory
Input the output image directory

Input the size of image used for the deep learning model calibration

Output: Delamination areas

Delamination Evaluation

Input Setup

Directory Setup
ML_Model | Input Image Directory | Output Directory

Break Image size

Run

Output Results

Delamination Density (%):
Output Example

- Spalling Region
- Crack Region
- Crack

University of Pittsburgh | Swanson School of Engineering