THE MECHANICAL ENGINEERING GRADUATE PROGRAM

The mechanical engineering graduate program offers PhD and master of science degrees in mechanical engineering, and master of science degree in nuclear engineering. Each graduate student's program is developed individually within very broad limits and is carefully designed to meet his or her needs and objectives. The graduate faculty is committed to high-quality research and teaching. The curriculum is an integrated program of study in applied sciences, applied mathematics, and modern computational procedures that are relevant to the research emphasis in the department. The research is focused on five major areas: (1) **Energy Technology**: fluid mechanics, Newtonian and non-Newtonian fluid dynamics, heat transfer, combustion, fuel cells, gas turbines, advanced thermodynamics cycles and hybrid systems, thermal hydraulics in nuclear energy generation, energy accountability and sustainability in electronic equipment; transducers and control; (2) **Smart Materials, Transducers, Dynamic Systems and Control**: Sensors and actuators based on smart materials, adaptive structures and materials, structural acoustics, active/passive noise control, micro-electro-mechanical systems, microfluidic devices, radio-frequency energy harvesting, structural acoustics, and structural vibration control, novel actuators and mechatronics; (3) **Nanotechnology**: process design and modeling, tribology, composite materials, computational materials, multiscale simulation methods; micro- and nano-fabrication and characterization methods; (4) **Advanced Manufacturing**: 3D additive manufacturing, inkjet printing, laser manufacturing, topology optimization; and (5) **Biomechanics**: constitutive modeling of soft biological tissues, experimental and computational biomechanics, biomechanical modeling/simulation; musculoskeletal biomechanics, upper extremity biomechanics, joint replacement.
DEGREE PROGRAMS

An application for either the MS or PhD program is judged on the student’s prior academic record, GRE scores (required for PhD applicants), the accreditation of the prior degree granting school, and the capability of the department to match the applicant’s interest with the program. A foreign national student who did not receive his or her Bachelor of Science or Master of Science degree from an accredited U.S. institution is required to take the TOEFL exam and receive a score of at least 550 (213 for the computer-based exam / 80 internet-based exam) or the International English Language Testing System (IELTS) and receive a minimum result of Band 6.5 as well as the GRE. GRE testing may also be required for applicants of the MS program if requested by the Graduate Committee. Students with a Bachelor of Science degree in another engineering field, mathematics, or physics will also be considered for the graduate program with the possibility that prerequisite courses may be required. A part-time program is available for students who are employed in local industries. Part-time students usually carry from three to six credits per term in either day or evening classes.

Applicants who do not meet these requirements will be considered on an individual basis with strong emphasis given to academic promise, career orientation, work experience, and preparation in engineering and related disciplines. In some cases, applicants may be admitted provisionally until certain deficiencies in either coursework or academic achievement are satisfied.

Master of Science Program.

Upon entering, the student plans a program of study with the aid of the faculty advisor. The course requirements can be met by either the

(1) Thesis Option (Research M.S. Track):
21 course credits
3 ME 2997
6 ME 2999
30 Credits

Or the

(2) Non-Thesis Option (Professional M.S. Track): 30 course credits.

Thesis Option (Research M.S. Track)

The research M.S. track is primarily for those students who wish to pursue the PhD. Students in this track will be advised to take those courses best suited for a research degree. For full time graduate students who are supported by department scholarships must choose research M.S. track. Each candidate must provide a suitable number of copies of the thesis for review and use as designated by the thesis examining committee, consisting of at least three members of the faculty recommended by the major advisor and approved by the department chair. The major advisor must be a Mechanical Engineering Faculty with an appointment in the Mechanical Engineering and Materials Science Department. Nonnative English speakers are encouraged to take ENGR 2015 Technical Writing (however this course does not count toward graduation). The final oral examination in defense of the master's thesis is conducted by the thesis committee, and a report of this examination signed by all members of the committee must be filed in the office of the dean. After the examination, the approved ETD must be deposited to the ETD Online System where it will be reviewed by the ETD Student Services Staff in the dean's office of the student's school and submitted for microfilming and deposit in the University Library System. A receipt for the ETD processing/microfilming fees and any necessary paperwork must be submitted to the appropriate ETD Staff in the Office of Administration.
Non-Thesis Option (Professional M.S. Track)

The professional MS programs are oriented toward full-time students seeking a career in industry, and part-time students currently working in industry. Full-time GSR-supported students might change to professional M.S. track, upon request/approval by the sponsoring faculty advisor and the graduate program. Professional master's degrees are conferred upon those students who demonstrate comprehensive mastery of their general field of study. The professional master's degrees normally require the satisfactory completion of at least 30 course credits of graduate study approved by the department.

No more than six credit hours may be granted to a student as transfer credit for work done at another accredited graduate institution. (See Acceptance of Transfer Credits section for further detail.) MS/MBA students are limited to transferring six credit hours. All credits earned in the ME master's degree program must be at the graduate level (the 2000 or 3000 series courses).

Master's degrees are conferred only on those students who have completed all course requirements with at least a 3.00 QPA.

(Visit http://www.bulletins.pitt.edu/graduate/index.html for further detail. http://www.bulletins.pitt.edu/graduate/index.html

In either case, students seeking the Master of Science degree in Mechanical Engineering must take at least one of the mathematics courses, ME 2001, ME 2002 or ME / ECE 2646. Up to nine (six for MS/MBA students) graduate credits from other engineering, mathematics, or physics departments may be used in fulfilling the remaining course requirements. The MS/MBA students are also required to complete an integrated project course. Please contact the Graduate Director for a copy of the guidelines for the integrated project course.

Subject Course Lists by Area

ME 2001 Differential Equations
ME 2002 Linear and Complex Analysis
ME/ECE 2646 Linear Systems Theory

Materials and Biomechanics
ME 2005 Structure of Materials
ME 2007 Elements of Materials Science and Engineering 1
ME 2008 Elements of Materials Science and Engineering 2 (Proposed)
ME 2009 Processing and Properties of Metals
ME 2010 Nanomechanics, Materials & Device
ME 2048 Engineering Alloys for Construction
ME 2060 Numerical Methods
ME 2062 Orthopaedic Engineering
ME 2064 Intro to Cell Mechanobiology
ME 2067 Musculoskeletal Biomechanics
ME 2069 Materials Science of Nanostructures
ME 2084 Introduction to Polymer Science
ME 2086 Mechanics of 3D Printed Materials and Structures
ME 2222 Nanoscale Modeling and Simulation: Molecular Dynamics
ME 2223 Nanoscale Modeling and Simulations: Density Functional Theory

Dynamic Systems and Control
ME 2015 Human Robotics and Control
ME 2020 Mechanical Vibrations
ME 2027 Advanced Dynamics
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 2042</td>
<td>Measurement and Analysis of Vibroacoustic Systems</td>
</tr>
<tr>
<td>ME 2045</td>
<td>Linear Control systems</td>
</tr>
<tr>
<td>ME 2046</td>
<td>Digital Control Systems</td>
</tr>
<tr>
<td>ME 2242</td>
<td>– Optimal Filtering and Estimation</td>
</tr>
<tr>
<td>ME2247/ECE</td>
<td>2647 Introduction to Nonlinear Control Design</td>
</tr>
<tr>
<td>ME/ECE</td>
<td>2646 Linear Systems Theory</td>
</tr>
<tr>
<td>ME/ECE</td>
<td>2671 Optimization Methods</td>
</tr>
<tr>
<td>ME/ECE</td>
<td>3650 Optimal Control</td>
</tr>
<tr>
<td>ME 2080</td>
<td>Introduction to MicroElectroMechanical Systems (MEMS)</td>
</tr>
<tr>
<td>ME 2082</td>
<td>Principles of Electromechanical Sensors & Actuators</td>
</tr>
</tbody>
</table>

Fluid Mechanics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 2003</td>
<td>Introduction to Continuum Mechanics</td>
</tr>
<tr>
<td>ME 2055</td>
<td>Computational Fluid Dynamics and Heat Transfer</td>
</tr>
<tr>
<td>ME 2070</td>
<td>Microfluidics</td>
</tr>
<tr>
<td>ME 2074</td>
<td>Advanced Fluid Mechanics</td>
</tr>
</tbody>
</table>

MEMS/NEMS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 2010</td>
<td>Nanomechanics, Materials & Device</td>
</tr>
<tr>
<td>ME 2049</td>
<td>Thermal Management in Electronic Systems</td>
</tr>
<tr>
<td>ME 2080</td>
<td>Introduction to MicroElectroMechanical Systems (MEMS)</td>
</tr>
<tr>
<td>ME 2082</td>
<td>Principles of Electromechanical Sensors & Actuators</td>
</tr>
<tr>
<td>ME 2222</td>
<td>Nanoscale Modeling and Simulation: Molecular Dynamics</td>
</tr>
<tr>
<td>ME 2223</td>
<td>Nanoscale Modeling and Simulations: Density Functional Theory</td>
</tr>
</tbody>
</table>

Solid Mechanics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 2003</td>
<td>Introduction to Continuum Mechanics</td>
</tr>
<tr>
<td>ME 2004</td>
<td>Elasticity</td>
</tr>
<tr>
<td>ME 2010</td>
<td>Nanomechanics, Materials, and Device</td>
</tr>
<tr>
<td>ME 2022</td>
<td>Applied Solid Mechanics</td>
</tr>
<tr>
<td>ME 2033</td>
<td>Fracture Mechanics</td>
</tr>
<tr>
<td>ME 2047</td>
<td>Finite Element Analysis</td>
</tr>
</tbody>
</table>

Thermal systems

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 2049</td>
<td>Thermal Management in Electronic Systems</td>
</tr>
<tr>
<td>ME 2050</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>ME 2053</td>
<td>Heat and Mass Transfer</td>
</tr>
<tr>
<td>ME 2055</td>
<td>Computational Fluid Dynamics and Heat Transfer</td>
</tr>
<tr>
<td>ME 2056</td>
<td>Introduction to Combustion Theory</td>
</tr>
<tr>
<td>ME 2074</td>
<td>Advanced Fluid Mechanics</td>
</tr>
<tr>
<td>ME 2254</td>
<td>Nanoscale Heat Transfer</td>
</tr>
</tbody>
</table>

Nuclear

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 2100</td>
<td>Fundamentals of Nuclear Engineering</td>
</tr>
<tr>
<td>ME 2101</td>
<td>Nuclear Core Dynamics</td>
</tr>
<tr>
<td>ME 2102</td>
<td>Nuclear Plant Dynamics and Control</td>
</tr>
<tr>
<td>ME 2103</td>
<td>Integration of Nuclear Plant Systems with the Reactor Core</td>
</tr>
<tr>
<td>ME 2104</td>
<td>Nuclear Operations Safety</td>
</tr>
<tr>
<td>ME 2105</td>
<td>Integrated Nuclear Power Plant Operations</td>
</tr>
<tr>
<td>ME 2110</td>
<td>Nuclear Materials</td>
</tr>
<tr>
<td>ME 2115</td>
<td>Heat Transfer & Fluid Flow In Nuclear Plants</td>
</tr>
<tr>
<td>ME 2120</td>
<td>Mathematical Modeling of Nuclear Plants</td>
</tr>
<tr>
<td>ME 2125</td>
<td>Case Studies in Nuclear Codes and Standards</td>
</tr>
<tr>
<td>ME 2130</td>
<td>Environmental Issues and Solutions for Nuclear Power</td>
</tr>
</tbody>
</table>

- 4 -
Doctor of Philosophy Program
An applicant is officially classified as a PhD student if he or she has been accepted into the PhD program and:

(1) has received an accredited MS or equivalent degree; or
(2) has completed eight courses at the MS level in good academic standing and has been granted permission to bypass the additional course work required for the MS degree.

Doctoral level courses are numbered in the 3000 series, but courses numbered in the 2000 series may also be appropriate for doctoral study. Courses numbered below 2000 do not meet the minimum requirements for doctoral study, although they may be taken to supplement a doctoral program. Students must maintain a minimum cumulative QPA of 3.30 in courses to be eligible to take the preliminary and comprehensive examinations as well as to graduate.

Plan of Study. During the first term in the doctoral program the student must submit a plan of study for approval by the department. Minimum course requirements (beyond the MS or equivalent degree) include:

30 credits for M.S. degree (or equivalent)
18 course credits at an advanced graduate level (Approval is required by the student’s advisor and the graduate committee. Courses may NOT include: ME 2001, ME 2002, ME 2003, ME 2004, ME2007, ME 2020, ME 2022, ME 2047, ME 2053, ME 2060, ME 2074, ME2100, ME2125 and any course that is a dual graduate/undergraduate course. Non-duplicating courses from other departments may be allowed subject to approval.)
6 ME3997 – PhD Research
12 ME3999 – PhD Dissertation (after admission to PhD Candidacy)
6\(^1\) additional credits approved by advisor and graduate committee
72 total credits

There will be no limits placed on the number of 3 credit hour ME3095 courses that can be counted as “advanced graduate level” courses. However, the student and advisor must come up with a title and paragraph description of the work that will be done for each instance along with the Plan of Study.

Seminar. PhD students are required to give one seminar each year, usually as part of the departmental seminar series. The seminar topic should be chosen in consultation with the student’s advisor.

Preliminary Examination for PhD (Qualifying Exam). The PhD preliminary examination is a diagnostic examination based on Master of Science-level courses (or equivalent) to assess student’s potential to complete the PhD program. It is not based on material covered in the PhD-level courses.

1. The student may sit for the exam a maximum of two times, and may only take it when offered. The second sitting must be taken during the next scheduled offering of the qualifying exam.
2. The exam is offered in five (5) subject areas: fluid mechanics, heat transfer, solid mechanics, dynamics and vibrations, and mathematics. A student has passed the qualifying exam when they have passed two areas.
3. Prior to sitting for an exam, the student must declare at most three (3) areas on which to be tested. Declaring fewer than three (3) areas will be considered forfeiture and not passing of those areas not attempted.

\(^1\) May include 2000-series courses excepted from the “advanced study” list
4. In each area, the exam consists of two parts, a closed book written exam and an oral exam. The student must pass both the written and oral parts of an area in one sitting.

5. The Graduate Committee will report the student's grade in those areas attempted. Students should not expect a grade on written and oral parts.

6. It is expected that a student will take the exam as soon as practical after beginning PhD study. The student's first sitting should be the first time the exam is offered after their first year of PhD study.

7. Exceptions to these rules must meet the written approval of the student's advisor in a letter explaining the reason for the exception submitted to and approved by the MEMS Graduate Committee.

8. The MEMS Graduate Committee is the final arbiter regarding the Ph.D. Qualifying Exam.

Comprehensive Examination for PhD. The comprehensive examination is administered by the student’s advisor. This exam is given after the student has passed the preliminary examination and completed all course requirements for the doctorate with a cumulative QPA of at least 3.0. A copy of the comprehensive exam document, signed by the major advisor, must be submitted to the ME Graduate Office. **In no case may the comprehensive examination be taken in the same term in which the student is to graduate.**

Doctoral Committee. The student’s major advisor proposes a dissertation committee. The doctoral committee must consist of a minimum of four current members of the graduate faculty. At least three of these graduate faculty members, including the major advisor, must be from the Mechanical Engineering Faculty in the Department of Mechanical Engineering and Materials Science. At least one graduate faculty member must be from another department. Other graduate and non-graduate faculty members may also serve on the committee.

Application for PhD Candidacy. After passing the PhD comprehensive examination, the student must apply for admission to candidacy before starting on a dissertation. To do this the student must submit the blue “Application for PhD Candidacy” form to the ME Graduate Office to have the PhD committee approved at least a month before the dissertation proposal meeting. If the committee is approved by the School of Engineering, the form is returned to the department. The committee members sign the form during the dissertation proposal meeting if they approve the proposed research. The form is then submitted again to the ME Graduate Office.

PhD Dissertation Proposal. In this examination, the student presents and defends a proposal for dissertation research to the doctoral committee. The members of the doctoral committee will review the proposal and either accept, revise, or reject it. If the dissertation proposal is accepted by the doctoral committee, the student is formally admitted to Candidacy for the Doctor of Philosophy Degree. Students are allowed to take ME 3999 credits ONLY after being admitted to PhD Candidacy. Admission to candidacy must occur at least one term before the student plans to graduate.

PhD Dissertation. Each student must prepare a dissertation embodying an extended original, independent investigation of a problem of significance in the student’s field of specialization. The dissertation must add to the general store of knowledge or understanding in that field. After the dissertation has been prepared and approved by the major advisor, the final oral examination shall be held. Nonnative English speakers are encouraged to take ENGR 2015 Technical Writing (however this course does not count toward graduation).

Final Oral Examination (Defense). This is the final examination of the PhD program, conducted by the doctoral committee, in which the student defends the validity of and the contributions made by his or her dissertation research as well as his or her ability to comprehend, organize, and contribute to the chosen field of research. The examination needs not be confined to materials in and related to the
dissertation. One copy of the dissertation must be submitted to each member of the doctoral
committee at least two weeks before the date set for the final oral examination. Other qualified
individuals may be invited by the committee to participate in the examination. This examination
begins with a seminar presented by the student that is open to all members of the University.
Therefore the date, place, and time of the examination should be published at least a week in advance
by submitting the dissertation title and abstract to the ME Graduate Office. Only members of the
doctoral committee may vote on whether the candidate has passed the examination. The student must
be registered in the term in which the degree is granted.

Dissertation/Thesis Copies. After the final oral examination is successfully completed, the
candidate must deposit with the department graduate office one bound copy of the approved
completed dissertation or thesis in final form. An additional copy may be required along with the
committee signature sheet, three copies of the title page, one original, and four copies of the abstract
and the receipt for the binding fee must be deposited in the Engineering Office of Administration.
The student’s committee should have completed the dissertation rubric sheet and returned to the
Graduate Administrator. Thesis and dissertations are now accepted in electronic form. You should
speak with someone in the Office of Administration and refer to the following website for additional
information (http://www.pitt.edu/~graduate/etd).

![PhD Milestones and Timeline](http://example.com/PhD_Milestones.png)

Figure 1. PhD Milestones and Timeline
In some special circumstances, a graduate student who is in the PhD program cannot continue his/her PhD study, the student may make a request to change from PhD to Master program. It will be subject to approval by the advisor and graduate committee. If approved, the student should take the MS research track, rather than professional track.

A list of PhD courses is given in the section GRADUATE MECHANICAL ENGINEERING COURSES. A flow chart of the PhD Process is included in Figure 1 above and general credit requirement and course registration is shown in Figure 2 below:

Graduate Certificate in Nuclear Engineering

Overview

The renaissance of nuclear science and technology in the United States has created a need in the marketplace once again for engineers with nuclear knowledge. The University of Pittsburgh aims to meet these marketplace needs by preparing engineers through the graduate certificate in nuclear engineering.

Classes are taught by current and former nuclear engineers, including faculty with experience conducting commercial nuclear operations programs for Westinghouse and with certifications from the US Nuclear Regulatory Commission.

Objectives

The objectives of the nuclear engineering certificate are:

- To develop the advanced competencies needed by science and engineering graduates to contribute quickly and effectively to the renaissance of nuclear science and technology in the United States and abroad, and
- To create a benchmark educational program that can serve as a model throughout academia.

This program provides coursework for graduate level nuclear engineering education with a focus on nuclear operations and safety. The certificate may be combined with graduate courses in any one of the School’s seven MS degree programs (Bioengineering, Chemical, Civil, Electrical and Computer, Industrial, Materials Science and Mechanical Engineering) or as a post-baccalaureate certificate. This focus on nuclear operations and safety not only fulfills a recognized educational need, but is also designed to take advantage of unique industrial resources in the Pittsburgh area which will greatly facilitate student learning.
The program will be sufficiently flexible to accommodate students from a wide spectrum of engineering disciplines. Since all nuclear courses are cross-listed as Mechanical Engineering Courses, they count both toward a Nuclear Certificate and a MS or PhD degree.

Requirements

Nuclear Certificates are conferred only on those students who have completed all course requirements with at least a 3.00 GPA.

All students must successfully complete five of the following nuclear courses in order to earn the graduate certificate:

- ME2100 Fundamentals of Nuclear Engineering
- ME2101 Nuclear Core Dynamics
- ME2102 Nuclear Plant Dynamics and Control
- ME2103 Integration of Nuclear Plant Systems with the Reactor Core
- ME2104 Nuclear Operations Safety
- ME2105 Integrated Nuclear Power Plant Operations
- ME2110 Nuclear Materials
- ME2115 Heat Transfer and Fluid Flow in Nuclear Plants
- ME2120 Mathematical Modeling of Nuclear Power Plants
- ME2125 Case Studies in Nuclear Codes and Standards
- ME2130 Environmental Issues and Solutions for Nuclear Power

(Course Descriptions available under Graduate Mechanical Engineering Courses)

Who May Apply

Practicing engineers currently in or aspiring to a leadership role in the nuclear industry,

Engineering professionals who desire graduate level education in nuclear engineering with a focus on safe nuclear plant operations,

New graduates with a minimum of a bachelor's degree in a technical discipline, and

Professionals who manage multidisciplinary teams for project design or management in the nuclear industry.

How to Apply

At the University of Pittsburgh, any student pursuing a Master’s degree in the Swanson School of Engineering may pursue the graduate certificate in nuclear engineering as a focus track. It is also possible for individuals who wish to achieve the certificate only to apply as well (post-baccalaureate certificate). A minimum GPA of 3.0 for undergraduate degree is recommended. To apply, please see below.
Graduate Certificate of Nuclear Engineering Admission Requirements

United States citizens or permanent residents should follow this procedure:

Print the forms available on the following website: http://www.engr.pitt.edu/mems/graduate/nuclear-certificate_admissions.html. Indicate certificate (and any other degrees in which you are interested in the application). Return the completed application material with a check or money order (not cash) in the amount of $50 payable to the University of Pittsburgh (The fee for a Special Student application is $50). The application fee is non-refundable.

Ask the registrars of all undergraduate and graduate schools attended to send transcripts of records to the School of Engineering Office of Administration, 151 Benedum Engineering Hall, University of Pittsburgh, Pittsburgh, PA 15261. An official transcript of the undergraduate record is required even though the applicant may not intend to work towards a degree. A graduate of the University of Pittsburgh need not request the University registrar to send a transcript of the undergraduate record.

Action will be taken after receipt of the completed application materials, including the application fee, and complete transcripts of work done in previous undergraduate and graduate curricula. The deadline for the fall term is March 1; the spring term deadline is July 1; and the summer term deadline is February 1. We ask that International Students send in their application materials at least two months before the posted deadlines. Applications received after the deadline will be considered on an individual basis.

Special Student Status

Students who are seeking advanced degrees but who are unable to meet the deadline for filing all required credentials for admission may be granted temporary admission provided they present acceptable evidence concerning their qualifications for graduate study.

Regular admission must be accomplished within the first term of registration.

Students who are not seeking an advanced degree but who have specific qualifications for one or more courses, including courses required for learning or certification, may register for such courses subject to review by the department and the dean of the school. If a student should apply for admission to a degree program, a maximum of 6 credits may be applied toward a graduate degree.

Who to contact

If you have questions about the Nuclear Certificate curriculum, please contact Dr. Daniel Cole, Director of Nuclear Programs, at jdm75@pitt.edu, (412) 624-9799.

If you have questions about registration, please contact the Graduate Administrator, Ms. Carolyn Chuha, at cac90@pitt.edu or (412) 624-9722.
GRADUATE MECHANICAL ENGINEERING COURSES

Masters Level Courses:

ME 2001^2 DIFFERENTIAL EQUATIONS 3 cr.
Ordinary differential equations; series solutions of differential equations; introduction to partial differential equations.
Prerequisite: MATH0290 or equivalent.

ME 2002^2 LINEAR AND COMPLEX ANALYSIS 3 cr.
Linear analysis including linear algebra, vector spaces and linear transformations, and vector analysis. Complex analysis including analytic functions of a complex variable, infinite series in the complex plane, and conformal mapping. Calculus of variations.
Prerequisites: MATH0280, MATH0290 or equivalent.

ME 2003^2 INTRODUCTION TO CONTINUUM MECHANICS 3 cr.
The fundamental concepts of continuum mechanics necessary for studying the mechanical behavior of solids and fluids. Includes a review of vectors and tensors; stress; strain and deformation; general principles in the form of balance laws; constitutive equations and their restrictions; and specialization to the theories of linearized elasticity and fluid mechanics. This course is cross-listed as MSE2036.

ME 2004^2 ELASTICITY 3 cr.
Prerequisites: ME2001, ME2003.

ME 2005 STRUCTURE OF MATERIALS 3 cr.
Basic crystallography of materials; symmetry; point groups and space groups; tensor properties of crystals; diffraction methods in materials science; atomic packing and structures; glassy state, polycrystalline aggregates; grain boundaries and interfaces in materials; textures; multiphase materials; quantitative stereology and microstructural characterization; thin films. This course is cross-listed as MSE2003.
Prerequisites: ENGR0022 or equivalent.

ME 2007 INTRODUCTION TO MATERIALS SCIENCE AND ENGR 1 3 cr.
Course is primarily designed for graduate students entering the program without a degree in a field of materials engineering. Bonding and structure of materials; thermodynamics and phase diagrams; imperfections in crystals; and rate processes. This course is cross-listed as MSE 2067.
Prerequisites: ENGR0022 or equivalent.

ME 2008 INTRODUCTION TO MATERIALS SCIENCE AND ENGR 2 3 cr.
Course is primarily designed for graduate students entering the program without a degree in a field of materials. Mechanical properties; plastic deformation, mechanical properties and microstructure control; high-temperature deformation; deformation of amorphous materials. Electromagnetic properties; electrons in solids; electronic transport; junctions; magnetic properties; dielectric and optical properties. This course is cross-listed as MSE 2068 Elements of Materials Science and Engineering 2.
Prerequisites: ENGR0022 or equivalent.

^2 Course is not considered to be at the “advanced graduate level” for PhD study.
ME 2009 PROCESSING & PROPERTY OF METALS 3 cr.
This course is primarily designed for graduate students entering the program without a degree in materials. Alloy design, strengthening mechanisms, mechanical properties: plastic deformation, mechanical properties and microstructure control; high temperature deformation, grain size control during reheating and during reformation.
Prerequisites: ME2007.

ME 2010 NANOMECHANICS, MATERIALS & DEVICES 3 cr.
This course is an introduction for current nanotechnology and fundamentals for nanoengineering. It mainly contains three areas: nanomechanics, nanomaterials and nanoscaled devices. In nanomechanics, it covers nanoindentation mechanics, thin film mechanics and one dimensional nanowire mechanics, nano-crack mechanics, deformation in nanomaterials. Nanomechanical model will be emphasized. In nanomaterials, it covers carbon nanotubes, one dimensional semi-conducting nanowires and nano-multilayers as well as nanostructured composites. Novel property/phenomena in the nanomaterials will be reviewed. Nano-scaled mechanical/electromechanical/optical testing on the nanomaterials will be presented. Potential application of the nanomaterials for the nanodevices such as gas/optical sensors, actuators, as well as nano-force sensors will be discussed. This course is cross-listed as MSE2037.
No prerequisites.

ME 2015 HUMAN ROBOTICS AND CONTROL 3 cr.
This course is intended for graduate students interested in human movement control. The engineering framework from robotics controls, and filtering will be widely employed to model human movement and its control. These concepts will be merged with neurophysiology and computational neuroscience to understand adaptability in human motor control and its applications to neuro-rehabilitation. The course will introduce dynamic modeling of human limbs, internal models for movement control, sensorimotor integration using optimal filtering, neurophysiology of locomotion, and motor skill learning in able-bodied persons and persons with mobility disorders.
Scope: The course will be helpful for students who want to pursue a career in robotics and control for neuro-rehabilitation. The course will also be valuable to students who are curious about robotics, control, and estimation theory, in general. The course can be listed in the Departments of Bioengineering, Mechanical engineering, and Electrical engineering at the University of Pittsburgh.
Pre-requisites: Undergraduate coursework in Dynamics, Automatic control, Linear Algebra, Differential equations is required. Familiarity with MATLAB/Simulink is preferred.

ME 2020 MECHANICAL VIBRATIONS 3 cr.
Analysis of linear multi-degree of freedom systems. Lagrangian formulation, model analysis, lumped parameter analysis of discrete systems, and continuous system vibrations. Introduction to non-linear systems.
Prerequisites: MATH0290, MEMS1014 or equivalent.

ME 2022 APPLIED SOLID MECHANICS 3 cr.
Covers fundamental, classical, and advanced topics in mechanics of materials. These include but are not limited to theories and relationships of stress and strain, energy methods, elementary plasticity, thermal stresses, and elasticity problems in axial, torsion, bending, and 2D problems. This course is cross-listed as MSE2038.
Prerequisites: ENGR0145 or MEMS1028 or equivalent.

ME 2027 ADVANCED DYNAMICS 3 cr.
Kinematics and dynamics of rigid bodies, Euler’s equations and Euler angles, the elementary calculus of variations, the development of Lagrange’s equations and the principle of virtual work as used in Kane’s equations, stability of mechanical systems as applied to a single rotating body. Prerequisite: MENS1015 or equivalent.

ME 2033 FRACTURE MECHANICS FOR PRODUCT DESIGN & MFG. 3 cr.
Failure of manufactured products in service, implications for design. Energy release rates, toughness, evaluation of experimental tests. Fracture mechanisms in different material systems. Fracture toughness testing. Materials selection. Damage tolerance. Design studies. This course is cross-listed with MENS2032.
Prerequisite: ENGR 0145 or equivalent.

ME2041 EXPERIMENTAL MECHANICS 3 cr.
Stress determination from strain measurements, strain measuring devices and systems; variable resistance strain gages with emphasis on circuits, calibration, compensation, static, and dynamic application; stress analysis in Bio and MEMS systems. Force measurement in the Micro- and Nano-Newton level in Bio and Micro-systems by optical and piezoelectric techniques.
Prerequisite: ENGR 0145 or equivalent.

ME2042 MEASUREMENT & ANALYSIS OF VIBRO-ACOUSTIC SYSTEMS 3 cr.
This course will present measurement and analysis techniques for dynamic systems, with particular emphasis on mechanical vibrations and acoustics. Background on vibration of lumped and continuous parameter systems, acoustics, and noise and vibration control will be given. Other concepts include FFTs, windowing, calculation of input/output relationships, test methods, transducers, instrumentation, and the use of dynamic signal analyzers. Application to system identification and modal analysis will be included, as well as hardware demonstrations.
Prerequisite: MENS1020 or ME2020.

ME 2045 LINEAR CONTROL SYSTEMS 3 cr.
Control systems analysis and design techniques are presented for wide range of dynamic systems through the use of modern control tools. Builds upon the foundation of classical feedback control theory. Tools will be developed for analyzing and designing controllers for multi-input, multi-output dynamic systems, including state space, controllability and observability, stability, and state estimation. Design problems with hands-on experience.
Prerequisite: MENS1014 or equivalent.

ME 2046 DIGITAL CONTROL SYSTEMS 3 cr.
This course provides the tools necessary to analyze and design discrete time (digital computer) control systems for real-time control of dynamic systems, using both transform and state space approaches. Topics include the z-transform, relationships between the z-domain and Laplace domain, characteristics of sampled-data systems including sample rate and quantization effects. Emphasis is on design of digital controllers for dynamic systems.
Prerequisite: ME2045

ME 2047 FINITE ELEMENT ANALYSIS 3 cr.
Finite element method is introduced and applied to problems in two-dimensional elasticity, plates, heat transfer, and transient structural mechanics.
Prerequisites: ENGR0135, MENS1028 or equivalent.

ME 2048 ENGINEERING ALLOYS FOR CONSTRUCTION 3 cr.
The goal of this course is to understand modern metallic alloys used in construction. To accomplish this goal, the following sequence is offered: Review of physical metallurgy
principles: thermodynamics, kinetics, phase and phase transformations; microstructure and properties of stainless steels, aluminum alloys, titanium alloys, nickel and cobalt-based superalloys and alloys for nuclear core applications.

Prerequisites: ENGR0022 or equivalent.

ME 2049 THERMAL MANAGEMENT OF ELECTRONIC SYSTEMS 3 cr.
This course reviews the prevalent thermal management techniques commonly employed to mitigate overheating of electronic systems. The primary goal of this course is to gain fundamental understanding of the following topics: thermal spreading, contact resistance, free and forced convection, radiation, fins and heat sinks, phase change materials, boiling/condensation/immersion cooling, jet impingement, heat pipes, and microchannels. The secondary goal is to acquire the ability to apply this knowledge to real applications including computing and communication systems as well as military and medical electronic systems.

ME 2050 THERMODYNAMICS 3 cr.
This course introduces the basic concepts and principles of thermodynamics. Topics include the construction of tables of thermodynamic properties, the design and optimization of energy conversion devices, the elements of chemical thermodynamics, and the elements of non-equilibrium thermodynamics.

Prerequisites: MEMS0051, MEMS1051 or equivalent.

ME 2053 HEAT AND MASS TRANSFER 3 cr.
Steady-state and transient conduction in solids; conservation laws of mass, momentum, and energy; forced and free convection heat transfer, condensation and boiling; and thermal radiation.

Prerequisite: MEMS1052 or equivalent.

ME 2055 COMPUTER-AIDED ANALYSIS IN TRANSPORT PHENOMENA 3 cr.
This course provides an introduction to implementation of some of the numerical/computational methods for solving problems in transport phenomena. Fields described by linear and non-linear ordinary differential equations (initial & boundary value problems), and partial differential equations (elliptic, parabolic and hyperbolic) will be considered by means of various examples from fluid dynamics, heat & mass transfer, and combustion. Numerical discretization techniques based on Finite Difference Methods (FDM) will be the subject of main discussions.

Prerequisites: ENGR0012, MEMS0051 or equivalent.

ME 2056 INTRODUCTION TO COMBUSTION THEORY 3 cr.
This course presents an introduction to combustion theory, covering the general solution techniques associated with combustion phenomena. It covers preparatory materials such as chemical thermodynamics, heat and mass transfer, and conservation equations for multi-component reacting systems. The primary emphasis of the course is to prepare a foundation for the student who has not previously studied combustion phenomena.

Prerequisite: ME1052.

ME 2060 NUMERICAL METHODS 3 cr.
Introduction to numerical techniques for the solution of linear and non-linear equations, numerical integration and differentiation, interpolation, ordinary and partial differential equations, and eigenvalue problems.

Prerequisites: MATH0290 or equivalent and computer programming experience.

ME 2062 ORTHOPAEDIC ENGINEERING 3 cr.
This is an advanced course that applies mechanics of materials, material failure theories and rigid body dynamics to orthopaedic device design, tissue mechanical modeling and surgical procedure evaluation. The course is meant to provide an introductory background to engineering aspects of
orthopaedic medicine and biomechanics for students preparing for medical school, positions in the medical device industry or graduate studies in this field.
Prerequisites: ENGR0145 or equivalent.

ME 2064 INTRO TO CELL MECHANOBIOLOGY 3 cr.
The objective of this course is to provide an overview and a basic understanding of cell mechanobiology. The materials that will be covered in this introductory course include; 1) Stress, strain, and deformation: uniaxial and biaxial loading, hydrostatic pressure; 2) Fluid shear stress; 3) Cell structure and function; 4) Basic cell & molecular techniques; 5) Effects of mechanical forces on cells; 6) Mechanotransduction; and 7) Applications of cell mechanobiology to tissue engineering.
Prerequisite: ME2003.

ME 2067 MUSCULOSKELETAL BIOMECHANICS 3 cr.
Course work will include the structure, function, and mechanics of the musculoskeletal system. Specific topics will include the kinematics and control of human movement and the mechanics of the musculoskeletal connective tissues, such as ligament, tendon, bone, cartilage, and muscle. Special emphasis will be placed on the relationship between function and material properties of these tissues. A research paper will be required as a term project.
No prerequisites.

ME 2069 MATERIALS SCIENCE OF NANOSTRUCTURES 3 cr.
A graduate level course that reviews the theories and phenomena associated with solid structures that lie in the nano- (or meso-) scale regime from 1 to 1000 nm. Engineered structures of these dimensions have unique properties due to their size, including 1) surface and interface-dominated energy considerations governing shape and phase formation, 2) optical interactions due to confinement effects, 3) unique electronic/quantum effects due to confinement. The course will survey the issues associated with creation, analysis, and theoretical modeling of these structures with a materials science (kinetics-thermodynamics) perspective. Some topics may vary from semester to semester.
No prerequisite.

ME2070 MICROFLUIDICS 3 cr.
The basic hypotheses in the micro-scale fluid mechanics may no longer be applicable in micro or even smaller scale. The objectives of this course are to; identify dominant forces and their effects in micro-scale fluid systems that are different from those in the macro-scale, to understand the fundamentals of microfluidic phenomena, to discuss various microfluidic applications in research and commercial levels, and to explore new possible microfluidic applications in the emerging fields.
Prerequisite: ME 1072 or equivalent.

ME 2074 ADVANCED FLUID MECHANICS 1 3 cr.
First graduate-level course in viscous fluid flow. Elementary solutions to Navier-Stokes equations, laminar and turbulent flows, boundary layers.

ME 2080 INTRO. TO MICROELECTROMECHANICAL SYSTEMS (MEMS) 3 cr.
Aimed to provide basic understanding of microfabrication processes, fundamentals of MicroElectroMechanical Systems (MEMS) technologies.
Prerequisites: ENGR0145, MEMS1014, MEMS0031 or equivalent.
ME 2082 PRINCIPLES OF ELECTROMECHANICAL SENSORS
& ACTUATORS
3 cr.

The objective of this course is to provide a thorough understanding of the various mechanisms
that can be exploited in the design of electromechanical sensors and actuators. These
transduction mechanisms include transduction based on changes: 1) in the energy stored in the
electric field; 2) in the energy stored in the magnetic field; 3) piezoelectricity & pyroelectricity;
4) linear inductive transduction mechanisms; and 5) resistive transduction mechanisms. Will also
discuss various transduction materials, sensors and actuators from a wide range of applications.
Prerequisites: ME1014 and ME1020/2020 or equivalent, ME2001.

ME 2084 INTRODUCTION TO POLYMER SCIENCE
3 cr.

This course is to provide an introduction to basic concepts of polymer science, including:
- Kinetics and mechanism of polymerization, synthesis and processing of polymers;
- Relationship of molecular conformation, structure and morphology to physical and
molecular properties;
- Structural and physical aspects of polymers;
- Molecular and atomic basis for polymer properties and behavior;
- Characteristics of the thermoplastic and thermoset polymers for single and
 multicomponent systems;
- Understanding of the viscoelastic and relaxation behavior for single and multicomponent
 systems; and
- Thermodynamics and kinetics of transition phenomena, structure, morphology and
 behavior

ME 2085 GRADUATE SEMINAR
0 cr.

Designed to acquaint graduate students with various subjects in advanced mechanics and current
graduate-level research mechanical engineering; aspects of graduate-level engineering and
applied mechanics not normally encountered in classes.

ME 2086 MECHANICS OF 3D PRINTED MATERIALS AND STRUCTURES
3 cr.

This course covers the mechanics of materials and structures fabricated by 3D printing. Topics to be
covered include various 3D printing processes and materials, effects of process parameters and
printing direction on mechanical behavior, microstructure-mechanical property relationships,
constitutive models, etc. The difference between 3D printing and traditional materials will be
highlighted.

Prerequisites: MATH 0250 (matrix theory and differential equations), ENGR 0014 (mechanics of
materials), MEMS 1028 (mechanical design I)

ME 2094 PRACTICUM
1 cr.

This course is designed to provide students who are engaged in thesis or dissertation research an
opportunity to participate in an internship with an external organization (industry or government
laboratory). The internship must be related to the thesis or dissertation research. See more
detailed description on the following page. Prerequisites: Approval of advisor and Graduate
Director.

ME 2095 GRADUATE PROJECTS
1 to 15 cr.

A special problem or reading course of individual study guided by the student’s major advisor.
Topics selected from any phase of mechanical engineering not covered in the regular MS-level
courses.
ME 2096 MS/MBA INTERGRATED PROJECTS 1.5 cr.
This is the integrated projects course for MS/MBA Majors. The project will be jointly overseen by Katz and SSOE. A 1-2 page proposal is due at the beginning of the term, followed by a final report. The project should blend the student’s business and engineering skills. Prerequisites: Approval of advisor and graduate director.

ME 2097 SPECIAL STUDY 3 cr.
Special topics of particular importance to an individual’s plan of study. Prerequisite: Approval of advisor.

ME 2222 NANOSCALE MODELING AND SIMULATION: MOLECULAR DYNAMICS 3 cr.
The course covers the essentials of molecular dynamics simulation by integrating theories from dynamics, statistical mechanics, thermodynamics, continuum mechanics, and quantum mechanics. Topics include heat bath methods, time integration methods, accelerated methods, and different applications related to nanotechnology. Students gain hands-on experience using state-of-the-art simulation software. Prerequisites: ENGR 0022, ENGR 0135, ENGR 0145, and MEMS 1015 or equivalent.

ME 2242 OPTIMAL FILTERING & ESTIMATION 3 cr.
This course covers the ins and outs of Kalman filtering. More specifically, the course begins with a presentation of discrete-time Kalman filtering theory and then explores a number of extensions of the basic ideas. Some of these topics include the best linear-estimator property; minimum variance estimation; orthogonality, projection, and the innovations process; smoothing; the extended Kalman filter; parameter identification; and stationary innovations and connections to spectral factorization. The material of this course is important for students in the field of control and is relevant to students in such diverse areas as statistics, economics, bioengineering, and operations research. The course goes beyond prior exposure to signal processing and digital filtering, although knowledge of those topics is not requisite. The subject matter does require the student to use linear system theory results and elementary concepts in stochastic processes.

ME 2247 INTRODUCTION TO NONLINEAR CONTROL DESIGN 3 cr.
This course is an introduction to nonlinear control design methods. The main topics include: Lyapunov stability analysis, feedback linearization, sliding mode control, and integrator backstepping. The content will be mathematical, supplemented with application examples from nonlinear systems such as robotic manipulators and human musculoskeletal system. Prerequisites: ME 2002, ME 2045.

ME 2254 NANONSCALE HEAT TRANSFER 3 cr.
This course will cover microscopic concepts and methodology in energy transport phenomena at nanometer scales, including equilibrium statistics, Boltzmann transport equation, and nano/microscale heat conduction and radiation, with applications in cutting edge nanotechnology. Prerequisites: MEMS1051, MEMS1052 or equivalent.

ME/ECE 2646 LINEAR SYSTEMS THEORY 3 cr.
Linear spaces and operators, mathematical descriptions of linear systems, controllability and observability, irreducible realization of rational transfer-function matrices, canonical forms, state feedback and state estimators, stability. Prerequisites: Knowledge of linear algebra, differential equations, and feedback control systems.
ME/ECE 2671 OPTIMIZATION METHODS 3cr.
Analytical and computational aspects of finite dimensional optimization, unconstrained and equality constrained problems, basic descent methods, conjugate direction methods, nonlinear programming and the Kuhn-Tucker theorem, linear programming, dynamic programming, multicriteria optimization.

ME 2997 MS RESEARCH 3 cr.
Students prepare a literature survey on a major research problem and submit an outline for future work on the Master of Science thesis.

ME 2999 MS THESIS 1-12 cr.

Nuclear Engineering Course List (also count towards MSME and PhDME)

ME2100 FUNDAMENTALS OF NUCLEAR ENGINEERING 3 cr.
Provides an introduction to application of theory to practical aspects of nuclear science and technology. It is intended as a ramp-up course for non-nuclear engineers who wish to pursue a graduate level Certificate in Nuclear Engineering at the University of Pittsburgh. Graduate level content will be assured by use of open-ended assignments and group discussions via an electronic blackboard. The course is designed to accommodate working adults who must travel from time to time. Topics will include 1) introduction, a grand tour of the nuclear fuel cycle, 2) power reactors and nuclear systems, 3) atomic and nuclear physics: the Einstein connection, 4) nuclear reactions and radiation: the life and trials of a neutron, 5) radiation and radiation protection: radiation realism, 6) nuclear reactor theory: from complex to simple, 7) reactor kinetics and control: thanks for delayed neutrons, 8) reactor energy removal: the balance between resilience and power density, 9) power conversion systems and the balance of plant: from neutrons to electricity, 10) accidents and lessons learned.
Prerequisite: BS degree in technical field, MATH0290 or equivalent.

ME2101 NUCLEAR CORE DYNAMICS 3 cr.
This course reviews the mathematics of nuclear reactor kinetics. Linear systems of ordinary differential equations are solved by state vector techniques, Laplace transform techniques, or finite difference techniques including the treatment of discretization errors resulting from various finite differencing approximations. A review of the physics of nuclear kinetics is followed by treatments of the kinetics equations including the effect of uncertainties, approximate solutions, and the interpretation of experiments to measure kinetics parameters. Representations and the physical basis of reactivity feedback mechanisms are treated. Lumped and distributed parameter models of fuel, coolant, fission products are derived and applied to develop quantitative static relationships and qualitative dynamic results for transient conditions. The course provides an introduction to space dependent reactor kinetics.
Pre-req: ENGR/ME 2100 or an undergraduate degree in nuclear engineering, work experience in nuclear engineering or instructor's permission

ME2102 NUCLEAR PLANT DYNAMICS AND CONTROL 3 cr.
This course provides an integrated engineering examination of a nuclear power plant from the perspective of instrumentation and control systems used to infer the condition of the nuclear plants and its systems, control its normal operation, and provide protection during transient situations as well as assess core damage during severe accident situations. Students will apply previous knowledge of analog, digital, and microprocessor electronics techniques to nuclear power plant design and operation and reactor protection and safety considerations that influence the design of the reactor plant. A major outcome of this course will be an integrated understanding of the interaction between the physics of nuclear plant control (reactivity and heat
balance) and the control and protection systems. This integrated plant understanding will be essential for the successful completion of the Integrated Nuclear Power Plant Operations course. Prerequisite: ME 2101.

ME2103 INTEGRATION OF NUCLEAR PLANT SYSTEMS WITH THE REACTOR CORE
This course examines design bases for major systems and components in a nuclear plant and evaluates how the systems function in an integrated fashion. The student will examine a typical nuclear power plant and those components and systems of the nuclear plant complex that have the potential for affecting core power, and whose failure could be an initiating event for a plant transient. Dynamic relationships for the systems developed in the companion nuclear courses will be transformed into stable, numerical algorithms for computer solutions and system interactions will be illustrated using a major industry transient analysis code. Emphasis is on how operations of and faults in systems and components can influence reactivity and core behavior. Through classroom discussions the students will assess engineering problems and operational problems that have been experienced in historical nuclear plant operations. The intended outcome is an aptitude for predicting complex transient behavior of the integrated nuclear plant considering factors that are important for safe and efficient operation: reactivity management and control, coolant inventory control, and core heat removal. Prerequisite: ME 2100 or instructors permission.

ME2104 NUCLEAR OPERATIONS SAFETY
This course reviews the development of reactor safety concepts, the emergence of safety strategies and culture, and the perspectives of severe accidents and how they can be mitigated. Risk-influenced regulatory practices will be introduced and quantitative use of probabilistic risk assessment will be described in terms of its use as a guide to intelligent decision-making. The characteristics of accident progression in the reactor vessel and containment in the unlikely event of core melting and relocation of fuel material will be explained. Offsite impacts of such severe accidents will be introduced. Source terms, dispersion of radionuclides, and dose projections will be developed for both conservative and realistic evolutions. Protective actions and emergency preparedness will be introduced. This course will cover the regulatory aspects of nuclear operations and the roles that the NRC, INPO, WANO and the IAEA play and what impact each has on plant operations. An introduction into regulatory requirements, the Safety Analysis Report, nuclear safety and licensing, and whistle-blower rules will be provided. Prerequisite: ME 2100.

ME2105 INTEGRATED NUCLEAR POWER PLANT OPERATIONS
This course provides a capstone hands-on-simulator and classroom experience to promote understanding how the integrated plant works and what challenges the operator faces, and to help an engineer “speak operations” with the interfacing groups. Use of the simulator is an effective way for students to understand accident control and Emergency Operating Procedures, and how the control room interfaces with the rest of the plant. Emphasis is placed on understanding plant characteristics and controls, rather than on developing control manipulation skills. Intended outcomes are an aptitude for predicting transient behavior of the integrated plant and a command of reactivity management and control that is important for efficient operation of a nuclear plant complex. The course presumes knowledge of the major systems in a nuclear power plant and will emphasize how operations of and faults in those systems and components can affect reactivity and core transient behavior. Prerequisites: ME2102, and ME2103.

ME2110 NUCLEAR MATERIALS
This course presumes that students have the knowledge base needed to understand materials issues associated with the design and operation of nuclear power plants, such as basic concepts of
physical metallurgy, a mechanistic and microstructural-based view of material properties, and basic metallurgical principles. This course will cover the metallurgy and phase diagrams of alloy systems important in the design of commercial nuclear power plants. The micro-structural changes that result from reactor exposure (including radiation damage and defect cluster evolution) are discussed in detail. The aim is to create a linkage between changes in the material microstructure and changes in the macroscopic behavior of the material. Also discussed is the corrosion of cladding materials as well the effects of irradiation on corrosion performance, as well as the effects of primary and secondary coolant chemistry on corrosion. Both mathematical methods and experimental techniques are emphasized so that theoretical modeling is guided by experimental data. Materials issues in current commercial nuclear reactors and materials issues in future core and plant designs are covered.

Prerequisite: An undergraduate course in material science or permission of the instructor.

ME2115 HEAT TRANSFER & FLUID FLOW IN NUCLEAR PLANTS 3 cr.
This course provides advanced knowledge to promote understanding and application of thermal and hydraulic tools and procedures used in reactor plant design and analysis. It assumes that the student has a fundamental knowledge base in fluid mechanics, thermodynamics, heat transfer and reactor thermal analysis. The focus of the course is on physical and mathematical concepts useful for design and analysis of light water nuclear reactor plants. Applications of mass, momentum, and energy balances are combined with use of water properties to analyze the entire reactor plant complex as a whole. Principles are applied through the application of major industry codes to specific cases.

Prerequisite: An undergraduate course in heat transfer and fluid flow or permission of the instructor.

ME2120 MATHEMATICAL MODELING OF NUCLEAR PLANTS 3 cr.
Graduate students will develop the graphics/simulation framework and the underlying mathematical models for simulating nuclear power plants in ME/ENGR2120 mathematical modeling of nuclear plants. Models will be developed in MATLAB/Simulink™ and configured to run on a PC so that students can both examine the mathematical models on which the simulation is based and use the simulation program in the laboratory-like sessions to study the effect of design changes on plant behavior. The simulation model fidelity developed is suitable for educational purposes and provides students with a desktop tool to realistically model and better understand reactor performance under various conditions. While it would not be intended to replace or duplicate the high-fidelity dynamic simulation used in major accident analysis codes such as RELAP, TRAC, and TRACE, the course will provide the student with an introduction and a working knowledge what is embodied in these industry standard codes.

ME 2125 CASE STUDIES IN NUCLEAR CODES AND STANDARDS 3 cr.

ME2130 ENVIRONMENTAL ISSUES AND SOLUTIONS FOR NUCLEAR POWER 3 cr.
This course will be developed in conjunction with University of Pittsburgh faculty with an interest in environmental issues impacting the nuclear power industry including School of Engineering faculty involved with the Mascaro Sustainability Initiative, faculty from the Department of Civil and Environmental Engineering and faculty from the Graduate School of Public and International Affairs. The course will address such topics as sustainable energy resources, engineering and societal ethical concerns, risk analysis, and future energy supplies in general and as each of these topics relates to such specific issues as the nuclear fuel cycle, nuclear reactor safety, nuclear waste disposal and transportation, and GEN IV and the hydrogen
economy. Students will better understand the socio-economic issues surrounding achieving a sustainable nuclear power future as it impacts fuel acquisition, plant operation and waste disposal.

ME 2094 Practicum

Having internships with industry and research laboratories provides graduate students a great opportunity to complement their studies with practical training. The course, ME 2094—Practicum, is a formal mechanism for full time graduate students who have obtained an internship with an external organization (industry or government research laboratory) to carry out that internship. The internship must be related to the student’s thesis/dissertation research.

Requirements and restrictions for ME2094:
- The student must be enrolled as a full time graduate student in the Mechanical Engineering Department.
- The student cannot be holding a teaching assistantship or research assistantship in the term the internship is conducted.
- International students must obtain the appropriate employment authorization through the Office of International Services **BEFORE** they may begin paid employment.
- The student must start the internship in the term for which it is registered.
- The internship must last for at least 12 weeks.
- The student must receive approval for the internship by the Graduate Director prior to registering for ME2094.
- The student must be on the MS Thesis or PhD track. If the student switches from the MS Thesis track to the Professional MS track, the ME2094 credits will not count towards his or her MS requirements.
- A student can register for ME2094 three different times for a maximum of three credits (1 credit max per term).
- Faculty advisor must be willing to recommend and oversee the student’s internship. Student must submit a report to their faculty advisor at the end of the internship and must receive a satisfactory (S) grade to receive credit.

Registration Steps for ME 2094:
1. Find a qualifying organization willing to conduct the internship.
2. Obtain Internship Agreement Form and guidelines from the graduate office.
3. Fill out the internship agreement form and have your advisor sign it and then submit it to the Graduate Director. The Agreement Form must include a statement from the employer, and for international students a certification from the Office of International Services indicating that you satisfy the requirements for practical training as set by the University and the Immigration and Naturalization Service.
4. Once the Internship Agreement Form has been approved by the Graduate Director, you can register for ME2094 for the specified term.
PhD Level Courses:

ME 3003 THEORY OF CONTINUOUS MEDIA 3 cr.
Kinematics of deformation, compatibility, material rates and relative deformation; analysis of stress; balance equations; constitutive equations for simple materials, isotropy group elastic solids, and viscous fluids.
Prerequisites: ME2001, ME2003, ME2004, ME2074

ME 3004 ADVANCED ELASTICITY 3 cr.
Advanced topics in linearized elasticity including solutions of fundamental problems in three-dimensions, complex variable methods, and elastodynamics. Introduction to nonlinear elasticity including finite deformations and constitutive theory.
Prerequisite: ME2001, ME2004

ME 3006 INELASTICITY 3 cr.
Plasticity including physical and experimental foundations; notion of plastic strain; yielding and yield surfaces; loading and unloading; flow rules; perfectly plastic hardening and softening behavior; plane strain rigid-perfectly plastic slip-line theory. Viscoelasticity including methods of specifying viscoelastic properties of materials; formulation and some basic solutions in viscoelastic stress analysis; experimental methods.
Prerequisites: ME2001, ME2003, ME2004, ME3003

ME 3007 ENERGETICS 3 cr.
The objectives of this course are to understand and apply the theory of Thermodynamics and transport properties, to distinguish the thermodynamics of properties from the thermodynamics of systems, to acquire the capacity to calculate properties from a minimal set of experimental data, and to gain the ability to estimate properties based on chemical behavior. Topics include derivation of the Gibbs Equations and Maxwell relations, advanced equations of state, molecular structure and fugacity, mixing rules, and vapor-liquid equilibrium calculations.
Prerequisite: ME2001

ME 3021 MECHANICAL VIBRATIONS 2 3 cr.
Advanced analysis of discrete and continuous system vibrations; variational characterizations of eigenvalues, elements of linear operator theory, approximate methods of solution, and finite element techniques in vibrations.
Prerequisite: ME2020.

ME 3023 COMPOSITES 3 cr.
Anisotropic linear elasticity, laminates; basic micromechanics of particulate and fiber reinforced materials and polycrystalline aggregates; the inclusion problem; Hashin-Shtrikman bounds and estimates of overall moduli; strength; microcracking and damage.

ME 3036 ADVANCED FRACTURE MECHANICS 3 cr.
Asymptotic crack tip fields in linear elastic fracture mechanics leading to the stress intensity factor, energy release rate, and crack tip opening displacement characterizations; elastic-plastic fracture mechanics in both small-scale yielding and large-scale yielding characterized by path independent integrals; micromechanics of fracture; fracture along bimaterial interfaces.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3047</td>
<td>ADVANCED FINITE ELEMENT ANALYSIS</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Stability and accuracy analysis of time integration methods for first- and second-order finite element systems; theory of beam and plate elements; elastic-plastic finite element analysis. Prerequisite: ME2004, ME2047.</td>
<td></td>
</tr>
<tr>
<td>ME 3052</td>
<td>CONDUCTION HEAT TRANSFER</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Study of conduction in continuous media by analytical and numerical methods. Analytical methods include series solution, superposition, Duhamel’s theorem, and Laplace transforms. Numerical methods include finite differences, finite elements, and response factors. Prerequisites: ME2001, ME2060.</td>
<td></td>
</tr>
<tr>
<td>ME 3054</td>
<td>CONVECTION HEAT TRANSFER</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Derivation of general governing equations using tensor notation; heat transfer in laminar and turbulent flows; incompressible and compressible thermal boundary layers; advanced solution methods for convective heat transfer. Prerequisites: ME2074.</td>
<td></td>
</tr>
<tr>
<td>ME 3055</td>
<td>MULTIPHASE FLOW</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Study of the fluid mechanics and heat transfer processes in multiphase systems; steady-state and transient models; boiling regimes; and a variety of correlations relations for void, critical phenomena, and flow regimes. Prerequisites: ME 2053, ME2060, and ME2074.</td>
<td></td>
</tr>
<tr>
<td>ME 3066</td>
<td>MATHEMATICAL TOPICS IN FLUID MECHANICS</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>The objective of this course is to introduce the students to the mathematical theory of the Navier-Stokes initial-boundary value problem and to some of the solved and unsolved fundamental questions. In this course, after deriving the Navier-Stokes equations from the general continuum theory, we shall prove the main known results of existence, uniqueness and regularity of solutions to the corresponding initial-boundary value problem. Moreover, we shall present a number of significant open questions and explain why the current mathematical approaches fail to answer them.</td>
<td></td>
</tr>
<tr>
<td>ME 3075</td>
<td>HYDRODYNAMIC STABILITY</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Global stability and uniqueness, Stuart-Landau theory, introduction to bifurcation theory, thermal instability, inertial instability, stability of parallel shear flow. Prerequisite: ME2001, ME2074</td>
<td></td>
</tr>
<tr>
<td>ME 3078</td>
<td>VISCOUS FLUIDS</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Properties and exact solutions of the Navier-Stokes equation; dynamic similarity, limiting values of the Reynolds number, regular singular perturbations, Stokes and Oseen flows and boundary layer theory; stability of laminar flow. Prerequisite: ME2001, ME2003, ME2074</td>
<td></td>
</tr>
<tr>
<td>ME 3079</td>
<td>TURBULENCE</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Definitions and equations of turbulent flow, correlations, scales of turbulence; differential equations, spectrum and decay of isotropic turbulence; non-isotropic turbulence, mathematical models and transport processes. Prerequisite: ME2001, ME2074</td>
<td></td>
</tr>
<tr>
<td>ME 3081</td>
<td>NON-NEWTONIAN FLUIDS</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Kinetics of viscoelastic fluids, viscometric flows, motions with constant stretch history. Simple fluids, constitutive models of differential type and of integral type. Stability and uniqueness. Prerequisite: ME2001, ME2003, ME2074</td>
<td></td>
</tr>
</tbody>
</table>
ME 3090 SPECIAL TOPICS IN MECHANICAL ENGINEERING 3 cr.
Special topics of current interest to students and faculty presented by a member of the faculty. By special request only.

ME 3095 GRADUATE PROJECTS 3 cr.
A special problems or reading course of individual study guided by the student's major advisor. Topics selected from any phase of mechanical engineering not covered in the regular PhD-level courses.

ME/ECE 3650 OPTIMAL CONTROL 3 cr.
Variation calculus and optimality conditions, linear quadratic problems, the Riccati equation, Pontryagin maximum principle, time-optimal control, dynamic programming and the Hamilton-Jacobi equation, numerical methods, decentralized control, multicontroller-multiobjective systems, differential games.
Prerequisite: Knowledge of linear system theory (ME/ECE 2646)

ME 3997 PhD RESEARCH 1–12 cr.
Research methods and procedures. Students are assigned a problem and are required to prepare a plan of attack including a literature survey for a research problem that can meet the dissertation requirement.

ME 3999 PhD DISSERTATION 1-15 cr.
MECHANICAL ENGINEERING GRADUATE FACULTY

The opportunity to work on interesting research problems under the tutelage of experienced and involved faculty is an important feature of graduate study in Mechanical Engineering at the University of Pittsburgh. Our faculty has interests in a broad range of topics. More information can be obtained from the Departmental website: http://www.engineering.pitt.edu/MEMS/People/Faculty/.

Markus Chmielus, Assistant Professor of Mechanical Engineering and Materials Science
Metal thin films as well as smart materials, i.e. ferromagnetic shape memory alloys (FSMA or MSMA), shape memory alloys (SMA), and piezo-electric materials (especially AlN thin films).
PhD (Dr.-Ing.), Materials Science and Engineering, Technical University Berlin, Germany, 2010

Sung Kwon Cho, Associate Professor of Mechanical Engineering and Materials Science
Micro-Electro-Mechanical systems (MEMS), Bio-MEMS, Microfluidics
Ph.D., Seoul National University

Minking Chyu, Leighton Orr Professor of Mechanical Engineering and Materials Science; Associate Dean of International Initiatives, and Dean of Sichuan-Pitt Institute
Heat Transfer, Gas Turbines, Microsystem Technologies
Ph.D., University of Minnesota

William W. Clark, Professor of Mechanical Engineering and Materials Science
Smart Materials & Structures, Vibration Control
Ph.D., Virginia Polytechnic Institute and State University

Daniel G. Cole, Associate Professor of Mechanical Engineering and Materials Science
Dynamic Systems, Measurement, and Control
Ph.D., Virginia Polytechnic Institute and State University

Giovanni P. Galdi, Professor of Mechanical Engineering and Materials Science
Theoretical Fluid Mechanics, Stability
Degree in Physics, University of Naples, Italy

Peyman Givi, Professor of Mechanical Engineering and Materials Science
Turbulence, Combustion, Computational Fluid Dynamics, Propulsion, and Stochastic Processes
Ph.D., Carnegie Mellon University

Tevis David Jacobs, Assistant Professor of Mechanical Engineering and Materials Science
Mechanical testing with in situ, high-resolution electron microscopy techniques
PhD, Materials Science and Engineering, University of Pennsylvania (2013)

Scott X. Mao, Professor of Mechanical Engineering and Materials Science
Nanomechanical behavior of materials, materials science, microelectromechanical systems (MEMS) and microfabrication; and piezoelectric/ferroelectric nanowires for sensor and nanodevice applications, atomic force microscope and nanomechanics.
Ph.D., Tohoku University

Mark C. Miller, Research Associate Professor of Mechanical Engineering and Materials Science
Dynamics of Human Movement
Ph.D. in Applied Mechanics, University of Michigan

Anne M. Robertson, Professor
Newtonian & Non-Newtonian Fluids, Computational Fluid Dynamics, Constitutive Theories,
Flow in Curved Pipes, and Biofluid Dynamics
Ph.D. in Mechanical Engineering, University of California at Berkeley

David E. Schmidt, Assistant Professor of Mechanical Engineering and Materials Science
Ph.D., in Civil and Environmental Engineering, Carnegie Mellon University, 2009

Nitin Sharma, Assistant Professor
Ph.D. in Mechanical and Aerospace Engineering, University of Florida, 2010
Intelligent and robust control of functional electrical stimulation (FES), modeling, optimization, and control of FES-elicited walking, and control of uncertain nonlinear systems with input and state delays

William S. Slaughter, Associate Professor/Undergraduate Director of Mechanical Engineering and Materials Science
Solid Mechanics, Micromechanics, Composites, and Fracture
Ph.D. in Engineering Sciences, Harvard University

Patrick Smolinski, Associate Professor of Mechanical Engineering and Materials Science
Computational Mechanics, Biomechanics
Ph.D. in Theoretical & Applied Mechanics, Northwestern University, Illinois

Albert To, Associate Professor of Mechanical Engineering and Materials Science
Simulation-based material system design, Multiscale modeling and simulation, Computational mechanics, Acoustic Emission Techniques
Ph.D. in Civil and Environmental Engineering, University of California, Berkeley

Phuoc Xuan Tran, Adjunct Professor of Mechanical Engineering & Materials Science

Jeffrey S. Vipperman, Professor of Mechanical Engineering and Materials Science
Active Microsystems (MEMS), Smart Structures, Acoustics & Vibrations, Transducers & Controls, Energy Systems
Ph.D. in Mechanical Engineering, Duke University

Guofeng Wang, Associate Professor of Mechanical Engineering and Materials Science
Computational Materials Science, Multiscale Modeling and Simulation, Computational Nanomechanics, Materials Design for Renewable Energy Technology
Ph.D. in Materials Science, California Institute of Technology

Qing-Ming Wang, Professor of Mechanical Engineering and Materials Science and Director of Mechanical Engineering Graduate Program
Micro-Electro-Mechanical systems (MEMS), Microfabrication, Smart Materials, Piezoelectric and Electrostrictive Materials for Electromechanical Transducer, Acoustic Wave Sensors
Ph.D. in Materials, Pennsylvania State University

Sylvanus N. Wosu, Associate Dean for Diversity, Associate Professor of Mechanical Engineering and Materials Science
Engineering, Dynamics of Composites
Ph.D. in Engineering Physics, University of Oklahoma
MECHANICAL ENGINEERING FACULTY (Cont.)

Emeritus Professors:

James L. S. Chen, Emeritus Professor of Mechanical Engineering
 Heat Transfer, Non-Newtonian Fluids, Suspension Flows
 Ph.D. in Mechanical Engineering, The University of Illinois

Richard S. Dougall, Emeritus Professor of Mechanical Engineering
 Heat Transfer, Multiphase Flow, Flow in Porous Media
 Sc.D., Massachusetts Institute of Technology

Charles C. Hwang, Emeritus Professor of Mechanical Engineering
 Combustion, Fluid Mechanics & Heat Transfer
 Ph.D. in Engineering, Harvard University

Michael J. Kolar, Emeritus Professor of Mechanical Engineering
 Design & Manufacturing
 Ph.D. in Engineering, Case Western Reserve University

Norman Laws, Emeritus Professor of Mechanical Engineering
 Composites, Applied Mechanics
 Ph.D., University of New Castle-upon-Tyne, England

Roy D. Marangoni, Associate Professor of Mechanical Engineering
 Vibrations, Biomechanics
 Ph.D. in Mechanical Engineering, University of Pittsburgh

Tse-Chien Woo, Emeritus Professor of Mechanical Engineering
 Viscoelasticity, Thermal Stresses
 Ph.D. in Applied Math, Brown University
EXPERIMENTAL & COMPUTATIONAL FACILITIES

To obtain more information on the research of the Mechanical Engineering and Materials Science Department, including an up to date list of laboratories, please visit the webpage: http://www.engineering.pitt.edu/Departments/MEMS/Content/Research/Labs-and-Groups/.

Advanced Manufacturing of Metals and Multifunctional Materials Laboratory (Dr. Chmielus) - This lab’s general research focus is the influence of production and processing parameters on the microstructure and properties of crystalline materials. Of particular interest are the production-microstructure-property relationships of metals produced via additive manufacturing (also known as 3D printing) as well as deposited ultra-high purity metal thin films. Another research area is the basic research and applications of multifunctional smart materials like Ni-Mn-Ga magnetic shape-memory alloys in all shapes. The focus in general is on the characterization of microstructure, defects, mechanical, electrical, magnetic and thermal properties on different length scales using local, national and international facilities.

Bio Tissues and Complex Fluids Laboratory (Dr. Anne Robertson) - The Bio Tissues and Complex Fluids Laboratory is devoted to the characterization and experimental study of complex materials. Much of our work is focused on understanding and quantifying the link between material behavior and structure. These results are used for the development of constitutive equations to model these materials in a predictive fashion. Of particular interest in this group is the behavior of cerebral vascular tissue with applications to the pathological condition of intracranial aneurysms (ICA). ICAs are abnormal dilations of arteries of arteries at the base of the brain. If untreated, an ICA can continue to expand until rupture, resulting in hemorrhage which is followed by death or severe disability in the majority of patients. A central goal of this research laboratory is to better understand the initiation, growth, and rupture of the ICA and to improve clinical treatments for this disease. The walls of the ICA differ morphologically from those of healthy arteries. Elastin, which is present in healthy blood vessels, is fragmented or missing in ICAs. A central question in this disease is why this breakdown occurs and what role it plays in the initiation and continued growth of ICAs. We conjecture this breakdown arises from a combination of mechanical damage and a breakdown in homeostatic mechanisms in the wall due to the particular hemodynamic loading in the region of ICA formation. Our group is the first to develop a constitutive equation to model this disruption using a structural model in which damage arises from both mechanical and hemodynamic factors. Experiments in our laboratory are directed at gaining a better understanding of the link between elastin structure and mechanical function. Our laboratory includes several custom built mechanical testing devices for this purpose. Structural properties of the wall are quantified in conjunction with the Center for Biological Imaging (CBI) of the University of Pittsburgh.

Composite Materials Laboratory (Dr. Sylvanus Wosu) - The Composite Materials Laboratory is used mainly for research in penetration and fracture mechanics of composite materials, the characterization of associated dynamic failure modes, and understanding the physics of dynamic failures of new generation of composite materials. The lab is equipped with a high-performance penetrating and fracturing Split Hopkinson Pressure Bar (SHPB) integrated to a high speed optical/CCD imaging system for high strain rate testing. The system is capable of capturing dynamic fracture, crack propagation, and fragmentation processes during composite materials failure at over 2 million frames per second. The lab operates a laser Raman Spectroscopy for characterization of residual strengths and micro micromechanical properties of composite materials with 1 mm resolution. Heat, moisture absorption, dynamic impact, or a combination of these factors results in transformation of micro-mechanical properties of composite materials in the region of damage and beyond. Laser Raman spectroscopy is used to directly measure fiber stress at the microscopic level because Raman frequencies or unique atomic vibrational energy levels of the constituent fibers are stress-strain dependent. In many crystalline or paracrystalline materials, the Raman peak position...
shifts linearly to lower wave numbers under tensile strains and to higher wave number under compressive strains.

Computational Materials Science Laboratory (Dr. Guofeng Wang) - The Computational Materials Science Lab focuses on developing multiscale simulation methods which range from electronic structure calculation, atomistic modeling, and finite element analysis, and further applying these simulation methods to design, characterize, and optimize materials. Current projects include (a) developing novel electro-catalysts for polymer electrolyte membrane fuel cells, (b) simulating surface segregation phenomena in various alloy systems, (c) modeling mechanical deformation process in nanomaterials, (d) investigating material failure mechanisms in rechargeable Li-ion battery, and (e) studying the structure/property relation of dendritic polymers. In the current laboratory, there are four Dell Precision Quad–core workstations for code development and software evaluation. In addition, the laboratory takes full advantage of the super-computation power provided by the University of Pittsburgh for research computation. The laboratory owns a number of computation software for research and education. The computational software include VASP (commercial), Wien2k (commercial), ABINIT (open-source), and FLEUR (open-source) for first-principles density functional theory calculations, Materials Studio (commercial), DLPOLY (open-source), LAMMPS (open-source), and MPSIM (self-developed) for large scale molecular dynamics simulations, and a self-developed atomistic Monte Carlo simulation suite based on modified embedded atom method.

Computational Nanomechanics Laboratory (Dr. Albert To) - The Computational Nanomechanics Lab focuses on investigating the mechanics of materials at the nanoscale using large-scale computer simulations. Current research projects include 1) Thermomechanical behavior of carbon nanotube based materials, 2) Atomistic-to-continuum themomechanical theory in solids, and 3) Mechanics of nanoporous and nanocrystalline metals. The computational tools the lab employs include molecular dynamics simulations, first-principles methods, Monte Carlo simulations, and finite element/meshfree methods. The computational resources the Lab has access to include a brand new 800-core cluster (shared with other research groups at Pitt) and a 24-core cluster. This 800-core cluster has 100 nodes each with two quad-core Intel Nehalem CPUs. The computer nodes are connected via a high speed Infiniband network, which will deliver exceptional performance for parallel calculations using large numbers of CPUs. The 24-core cluster consists of 4 x 6-Core Intel Xeon E7450 processors with 12GB of memory. The cluster has SUSE Linux Enterprise Server 10 installed along with MPICH, MPICH2 and Intel compiler ICC and IFC version 10.1 with Math Kernel Library 10.0.1.014. The lab also has several brand-new desktop computers, each having an Intel quadcore processor. The computers are well-equipped and are fully integrated into the University of Pittsburgh high-speed network. In addition, the lab has access to the state-of-the-art computing facilities at the Pittsburgh Supercomputing Center (www.psc.edu).

Computational Transport Phenomena Laboratory (Dr. Peyman Givi) - The research in this laboratory deals with fluid mechanics, combustion, heat and mass transfer, applied mathematics and numerical methods. The emphasis of current research in this laboratory is on "understanding physics and practical applications" rather than "developing computer algorithms." Computational simulations are performed with the goal to study the underlying physics in energy systems. Several general areas of investigations are: turbulent mixing, chemically reacting flows, high-speed combustion & propulsion, and transition & turbulence. The numerical methodologies in use consist of spectral methods (collocation, Galerkin), variety of finite difference, finite volume and finite element schemes, Lagrangian methods and many hybrid methods such as spectral-finite element and spectral-finite difference schemes. The laboratory is equipped with high-speed mini-supercomputers, graphic systems and state-of-the-art hardware and software for “flow visualization." Most computations require the use of off-cite supercomputers.
Fluids Laboratory (Dr. Paolo Galdi) - The Fluids Laboratory is the center for experimental research in fluid mechanics and rheology at the University of Pittsburgh. Much of the research in this laboratory examines the behavior of complex fluids, such as polymeric solutions, suspensions, and biological fluids in processing-like flows. We seek to better understand the link between flow behavior and the material properties so that materials can be processed more efficiently to yield the desired characteristics. In obtaining this goal, this laboratory develops and applies many cutting-edge technologies to obtain precise, in situ measurements of fluid velocity, stress, pressure, and temperature. These measurements are compared with direct numerical simulations to model, understand, and predict the flow behavior.

Gas Turbine Heat Transfer Laboratory (Dr. Minking Chyu) - The Gas Turbine Heat Transfer Laboratory is equipped with advanced flow and heat transfer measurement facilities directed toward obtaining fundamental understanding and design strategies of airfoil cooling in advanced gas turbine engines. Major experimental systems available include a particle imaging velocimetry, a computer-automated liquid crystal thermographic system, a UV-induced phosphor fluorescent thermometric imaging system, and a sublimation-based heat-mass analogous system. Specific projects currently under way include optimal endwall cooling, shaped-hole film cooling, innovative turbulator heat transfer enhancement, advanced concepts in trailing edge cooling, and instrumentation developments for unsteady thermal and pressure sensing.

John A. Swanson Micro and Nanotechnology Laboratory (MEMS Dept.) -
The John A. Swanson Micro/Nanotechnology Laboratory (JASMiN Lab) is a newly established research and educational facility directed for design, fabrication, and performance characterization of various engineering systems in micro- and nano-scales. This laboratory is built upon the existing capabilities in precision manufacturing, smart materials and transducers, rapid prototyping, and semiconductor fabrication in the Swanson School of Engineering. For the full line of silicon-based MEMS (MicroElectroMechanical Systems) processing, the JASMiN Lab is equipped in clean room, located in the 6th floor of the Benedum Engineering Hall, with various facilities for photolithography, thin-film deposition (sputtering and ultrahigh vacuum e-beam evaporation), wet/dry etching, dicing, and device characterizations. The Lab is open in public and all the facilities can be easily accessed, running mainly on the basis of user usage fees. The Department of Mechanical Engineering and Materials Science is currently expanding its research capabilities to both nano-scale devices and non-silicon-based micro-devices. New fabrication equipment, such as thick-film deposition/patterning facilities, deep reactive ion etching facilities, and special equipment to develop micro/nano devices for bio-medical and energy applications, is being established. Currently, interdisciplinary research and education are actively being carried out in the JASMiN Lab. The primary research areas include microfluidics, Bio-MEMS, binary semiconductor nanotube and nanowire research, electro-active polymer films and devices, compact/miniaturized fuel cell power generation devices, thin film piezoelectric and electrostrictive micro-devices, surface acoustic wave (SAW) devices, thin film bulk acoustic wave (BAW) devices, and so on.

Materials Micro-Characterization Laboratory or MMCL (MEMS Dept.) -
The MMCL is located mainly on the 8th floor of Benedum Hall and is administered within the Department of Mechanical Engineering and Materials Science. Prof. Wiezorek is the MMCL’s faculty director and is assisted in its management and daily operations by two Research Specialist staff members. It houses instrumentation for X-ray diffraction, scanning and transmission electron microscopy, scanning probe microscopy, light optical microscopy and nano-mechanical measurements, including facilities for sample preparation. The MMCL offers access to instrumentation and the expertise of its staff to support research and educational needs related to the structural, compositional, and chemical characterization and measurements of materials properties at the nano-scale. Major instrumentation includes:
- Two Philips X’pert X-ray diffractometers for powder diffraction and crystallographic texture studies and offering in-situ sample heating capabilities (T≤1600°C).
- One Philips XL-30 field emission scanning electron microscope (SEM) equipped with detectors for SE and BSE imaging, elemental composition analyses by energy-dispersive X-ray spectroscopy (EDS), and collection of electron beam backscatter patterns (EBSP) for orientation imaging microscopy.

- Two 200kV transmission electron microscopes (TEM), JEOL JEM 200CX and JEOL JEM 2000FX, imaging (line resolution 0.14 nm), diffraction, and EDS and EELS for composition and chemical characterization from areas as small as ~15 nm in diameter, with all digital data acquisition. Standard TEM specimen holders, low-background double-tilt and tilt-rotation holders, specialized holders for in-situ heating (up ~1000°C), in-situ cooling (liquid nitrogen temperature) and in-situ tensile straining are available.

- A Digital Instruments Dimension 3100 scanning probe microscope permits atomic force microscopy (AFM), scanning tunneling microscopy (STM), and magnetic force microscopy (MFM) investigations in a single platform.

- A Hysitron Tribo-Scope system permits nano-mechanical (indentation, scratch and wear testing) and surface topographical (AFM) measurements at the nano-scale.

- Three digital light-optical microscopes offer spatial lateral resolutions down to ~500 nm and include a highly versatile Keyence VHX 600 system for quantitative surface topographical measurements into the realm of sub-micron dimensions.

Mechanical Testing Laboratory (MEMS Dept.) - The Mechanical Testing Laboratory includes two hydraulic MTS machines. One has a high temperature capability for hot deformation simulation, and the other is an MTS 880, 20,000-pound frame with hydraulic grips and temperature capability up to 1000°C. Two screw-driven machines are available, a 50,000-pound Instron TT and a 10,000-pound ATS tabletop tester (this machine has fixtures for loading in tension, compression, and bending). The facility also includes several hardness testers, including one Brinell, two Rockwell, one Rockwell Superficial, and one Vickers, plus a new Leco M-400 G microhardness tester. Two impact testers are available—one with 100 foot-per-pound and the other with 265 foot-per-pound capacity. An ultrasonic elastic modulus tester is also available.

Micro/Bio Fluidics Laboratory (Dr. Sung Kwon Cho) - The Micro/Bio Fluidics Laboratory is primarily devoted to (1) engineering and developing a variety of micro/bio fluidic sensors, actuator and integrated systems that enable us to handle a wide range of micro/bio objects with more direct access and to (2) studying science and engineering associated with them. In particular, most research activities are heavily involved with micro fabrications. Available equipment includes a high-power florescent microscope, a low-power microscope, optical benches, a parylene coater, computers, data acquisition systems, high-voltage amplifiers, a conductivity meter, arbitrary waveform generators, MEMS device design software, and so on.

Micromechanics and Nano-science laboratory (Dr. Scott Mao) - This mechanical engineering laboratory is a modern facility with cutting edge technology for the study of micromechanics and physics of micrometer and nanometer scaled structures and materials. The laboratory contains atomic force microscopes and a nano-indentation testing facility, which provide a capability of measuring load vs. displacement at scales of 10⁻⁹ Newton vs nanometer, nano-scaled adhesion and micro-mechanical behavior for advanced materials including semiconductors and biosystems.

Microsensor and Microactuator Laboratory (Dr. Qing-Ming Wang) - With supports from federal funding agents, the current and future research activities conducted in the Microsensor and Microactuator Laboratory can be grouped in following closely related areas. 1) Fabrication and property characterization of piezoelectric, pyroelectric, and ferroelectric thin films and thick films, 2) On-chip integrated microsensors and microactuators that are based on piezoelectric AlN, ZnO, and PZT thin film materials, 3) Acoustic wave devices, including thin film bulk acoustic wave devices for RF and microwave frequency control application and acoustic wave sensors, 4) Piezoelectric and electrostrictive ceramics, and polymers such as PZT, PMN-PT, PVDF and copolymers, electro active
elastomers, magnetostrictive materials, multiferroic materials, and other functional materials for transducers and biomedical applications, 5) Fabrication and characterization of semiconductor nanowires, nanoparticles, and multifunctional nanocomposites. The laboratories accommodate extensive fabrication and characterization capabilities for functional materials and devices.

Musculoskeletal Modeling Laboratory (Dr. Xudong Zhang). This mechanical engineering laboratory conducts biomechanical analysis, modeling, and in silico simulation of the human musculoskeletal system and its hierarchical structural components during functional, particularly dynamic activities. The overarching goals are to advance the basic understanding of the musculoskeletal structure and function, capacity and limits, as well as pathomechanics and etiology of musculoskeletal injuries and disorders, and to develop or inspire novel engineering solutions that can better diagnose, prevent, or treat such injuries and disorders. The MML in Mechanical Engineering works synergistically with Orthopaedic Research Laboratories (ORLs) in Department of Orthopaedic Surgery of UPMC in carrying out research projects integrating in vivo and in vitro data acquisition and multi-scale modeling. Recently completed or current projects include in vivo measurement and modeling of lumbar intervertebral motion and disc deformation for control and prevention of low-back pain, development of an integrated computer tool for evaluation of meniscectomy and optimal design of meniscus transplantation, biodynamic modeling of multi-finger hand movement, and intelligent computer-aided personalized knee surgical planning.

NanoScale Fabrication and Characterization Facility (PINSE, Swanson School of Engineering)– The NFCF is a user facility in 4,000 ft2 clean-room environment (class 100, 1,000 and 10,000 areas), located in the sub-basement of Benedum Hall. NFCF is designed to support fabrication and characterization of nanoscale materials and structures, and integration of devices at all length scales. The facility houses advanced equipment with core nano-level (20 nm or below) capability for fabrication and characterization, including electron-beam lithography system, dual-beam system, plasma etching, thin film deposition, TEM, multifunctional scanning probe station, and modular XRD.

Nanoscale energy transport and conversion laboratory (Dr. Sangyeop Lee) - This mechanical engineering laboratory focuses on the fundamental aspects of energy transport and conversion processes in nano to macroscale for energy and information applications. The currently on-going research covers two major energy carriers, electron and phonon (a quantized lattice vibration). The transport of and the interaction between those energy carriers are simulated from first principles to gain fundamental understanding and develop better idea to manipulate their transport. In addition to this computational work, an experimental measurement setup is being developed using a laser pump-probe technique to characterize the energy transport phenomena in nano to macroscale.

NanoSystems Measurement and Control Lab (Dr. Dan Cole) - The NanoSystems Measurement and Control Lab conducts research in the area of dynamic systems, measurement and control for nanosystems. This research is focused on how to characterize systems at or near the nanoscale, describe their dynamics, measure such phenomena, and control them. Our research is centered around two instruments for measuring and manipulating things at the nanoscale: optical traps and magnetic traps. There are also research interests in the areas of maskless lithography, where techniques developed for the optical trap are finding application to photolithography, and the precision control of macroscale machines but to nanometer resolution.

Orthopaedic Engineering Laboratory (Dr. Pat Smolinski) – The Orthopaedic Engineering laboratory contains space and equipment for continuum, computational and experimental mechanics of biomaterials, tissues, medical devices, surgical procedures and injury mechanisms. The lab has uniaxial/torsional and rheological materials testing capabilities. Robotic testing system is available for the 6-DOF force or displacement testing of complex motions. Precise three-dimensional
measurements and surface recreation can be done by laser scanning equipment. Computational software for the processing of CT data and for finite element analysis is available.

Sound, Systems, and Structures Laboratory (Dr. Jeffrey Vipperman) (560 BENDM) – This mechanical engineering laboratory is dedicated to development, modeling, and experimental characterization of active systems at the micro and macro scales. The diverse range of projects typically blend the related fields of acoustics, noise control, hearing loss prevention, vibrations, structural-acoustic interaction, controls, and analog/digital signal processing. A 1,000 ft² laboratory equipped with state-of-the-art equipment is complemented with an ancillary 250 m³ anechoic chamber facility. Past and current projects include the development of active throttling valves for advanced energy systems, vibro-acoustic modeling of novel composites, active and passive noise and vibration control, hazard estimation for occupational impulse noise, development of automatic noise classifiers for military noise, and the development of thermoacoustic refrigeration for electronics cooling.

Thermal Science and Imaging Laboratory (Dr. Minking Chyu) - The Thermal Science and Imaging Laboratory is equipped with advanced flow and heat transfer measurement facilities directed toward obtaining fundamental understanding and design strategies for advanced thermal control systems. Major equipment includes a subsonic wind tunnel, a particle imaging velocimetry, a computer-automated liquid crystal thermographic system, a UV-induced phosphor fluorescent thermometric imaging system, and a sublimation-based heat-mass analogous system. Specific projects currently under way include optimal endwall cooling, shaped-hole film cooling, innovative turbulator heat transfer enhancement, advanced concepts in trailing edge cooling, and instrumentation developments for unsteady thermal and pressure sensing.

Vibration and Control Laboratory (Dr. William Clark, 225 BENDM) – The Vibration and Control Laboratory has been developed for studying smart materials and structures concepts, particularly in the areas of vibration control, energy harvesting, morphing material systems and adaptive mechatronics, and smart structures as they relate to sustainability. The laboratory is well equipped for experimental research in smart structures including a number of workstations for real-time control; a variety of transducers for actuating and measuring vibrations; and processing and testing equipment for the study of morphing and adaptive mechatronic systems.
GENERAL INFORMATION

The general regulations governing graduate study can be found in the graduate bulletin: http://www.bulletins.pitt.edu/graduate/regulations.htm. Much information is repeated below for your convenience, or where the department imposes stricter guidelines.

Admission – Applications for admission are encouraged from all persons with a genuine interest in advanced engineering study. Each application will be judged on its own merits. For the applicant who is a recent graduate of an Accreditation Board for Engineering and Technology (ABET) accredited school, admission will be granted on the basis of the undergraduate scholastic record. Usually an applicant with a B average (cumulative quality point average of 3.0/4.00) or better will be granted admission. The Graduate Record Examination (GRE) is required by the Mechanical Engineering Department. Applicants should check each program’s specific requirements. Applicants who do not meet these requirements may be considered on an individual basis with strong emphasis given to academic promise, career orientation, work experience, and preparation in engineering and related disciplines. In some cases, these applicants will be required to correct deficiencies in preparation for the graduate program.

Admission Procedures

(1) United States citizens or permanent residents should follow this procedure.
 a. Apply on-line at: https://app.applyyourself.com/?id=up-e or write or telephone the departmental Graduate Administrator or Coordinator for the application material.
 b. Return any hand-completed application materials: (http://www.engr.pitt.edu/admissions/graduate/download.html) with a check or money order (not cash) in the amount of $50 payable to the University of Pittsburgh (The fee for a Special Student application is $50.00). The application fee is not returnable.
 c. Ask the registrars of all undergraduate and graduate schools attended to send transcripts of records to the School of Engineering Office of Administration, 749 Benedum Engineering Hall, University of Pittsburgh, Pittsburgh, PA 15261. An official transcript of the undergraduate record is required even though the applicant may not intend to work towards a degree. A graduate of the University of Pittsburgh need not request the University registrar to send a transcript of the undergraduate record.
 d. Ensure that your letters of reference make it to the University, since this can hold up the admissions process.

Action will be taken after receipt of the completed application materials, including the application fee, and complete transcripts of work done in previous undergraduate and graduate curricula. The deadline for the fall term is March 1; the spring term deadline is July 1; and the summer term deadline is February 1. We ask that International Students send in their application materials at least two months before the posted deadlines. Applications received after the deadline will be considered on an individual basis.

(2) All international student applications are processed for academic qualifications by the School of Engineering and for non-academic qualifications by the Admissions Officer, Office of International Services (OIS). The document needed to apply for a non-immigrant visa will be issued only after the applicant has been admitted and has provided evidence of adequate financial support and English language proficiency. International applicants should follow this procedure:
 a. Direct preliminary inquiries concerning graduate programs, research, and financial aid to the departmental Graduate Coordinator. Applications for graduate study are available from the graduate coordinator and the School of Engineering Office of...
Administration, 151 Benedum Hall, Pittsburgh, PA 15261. Students can also apply online at: https://app.applyyourself.com/?id=up-e.

The non-refundable application fee for international students is $50.

b. The applicant will receive notification from the Engineering Office of Administration concerning the evaluation of academic qualifications.

c. If the academic evaluation by the department is favorable, the International Student Admissions Officer will review non-academic qualifications to determine eligibility for a visa document.

This procedure is also for any international applicants who are already in U. S. A.

The University reserves the right, even after the arrival and enrollment of a student from another country, to require, at his or her own expense, individual curricular adjustments whenever particular deficiencies or needs are found. This could include enrollment without credit in additional course work in English as a foreign language or in courses prerequisite to his or her regular plan of study. New students from abroad are encouraged to use the services of OIS to help them in their own adjustment to the United States and to facilitate their total educational experience.

English Language Proficiency – Graduate students must possess sufficient knowledge of English to study without being hindered by language problems, to understand lectures, and to participate successfully in class discussions. The determination that the applicant has sufficient proficiency is made by the admitting department or school, subject to University-wide minimum standards determined by the University Council on Graduate Study.

The Test of English as a Foreign Language (TOEFL) must be taken if the applicant’s native language is not English. A minimum score of 550 (213 on the computer-based test / 80 on the internet-based test) or higher on the TOEFL is required for admission to graduate study. The International English Language Testing System (IELTS) may now be substituted for the TOEFL. A minimum result of Band 6.5 is required on the IELTS. The requirement to take the TOEFL may be waived if the applicant has achieved a satisfactory score on other tests of English proficiency such as the IELTS or has received a degree from an accredited institution in the United States.

In special cases, a school or department may admit a student who has not demonstrated minimum proficiency in English. Upon arrival, students with TOEFL scores less than 550 (213 on the computer-based test / 80 on the internet-based test) or IELTS scores less than Band 6.5 will not be permitted to register until they have taken the on-campus administered Michigan Test of English Proficiency.

If remedial courses in English as a foreign language are recommended as an outcome of the Michigan Test of English Proficiency, the department or school must ensure that the recommendations are followed. All students with a TOEFL score less than 600 (250 on the computer-based test / 100 on the internet-based test) or less than Band 7 on IELTS must take the Michigan Test of English Language Proficiency upon arrival. Although the registration of only those with TOEFL scores less than 550 and IELTS scores less than Band 6.5 will be blocked.

In keeping with the University policy on Certification of English Language Fluency for Teaching, students who are not native speakers of English and are appointed as teaching assistants or teaching fellows are required to take a test of their spoken English upon arrival. Individuals are given non-teaching assignments and are required to take special course work until they attain passing scores. An unsatisfactory score at the time of reappointment is sufficient cause for non-renewal.
Original results of the Test of English as a Foreign Language (TOEFL) should be sent directly to the University of Pittsburgh by the Educational Testing Service. Copies of TOEFL test results are not acceptable. For information or an application for the TOEFL, you may contact the Educational Testing Service, P.O. Box 6151 Princeton, New Jersey 08541-6151, USA. (E-mail: toefl@ets.org; website: www.toefl.org). The institutional code for the University of Pittsburgh is 2927 and the department code for the School of Engineering is 69. International English Language Testing System (IELTS) is jointly managed by: University of Cambridge ESOL Examinations, British Council, and IDP: IELTS Australia. For more on IELTS, please visit the website: http://www.ielts.org.

Financial Aid – Admission to the graduate program does not imply the granting of financial aid. This is done separately, and an applicant interested in obtaining financial aid should request information directly from the department. The following types of aid may be available:

(1) **Fellowships** are awarded to students of outstanding ability. The financial aid is usually an unrestricted grant.

(2) **Teaching Assistantships and Teaching Fellowships** are awarded to exceptionally well-prepared students in return for assistance in laboratories, recitation sections, and other teaching duties. Partial or full tuition scholarships are also provided.

(3) **Research Assistantships** are awarded to students for assistance on research programs. Partial or full tuition scholarships are also provided.

When an award for financial aid is made by the department, the terms and conditions are specified. Applications for financial aid should be received as early as possible.

For information on student loans, contact the University Office of Admissions and Financial Aid, Alumni Hall – 4227 Fifth Avenue, University of Pittsburgh, Pittsburgh, PA 15260 (624-7488).
Tuition Costs and Fees

Note: *The University reserves the right to change the tuition rates and fees at any time without notice in advance.*

Tuition rates vary with each school within the University. Graduate students are invoiced per credit for the first one to eight credits and the full-time flat rate for nine to 15 credits. No student is permitted to register for more than 15 credits without specific permission from the dean of the school in which the student is pursuing a degree. If granted, the student will be assessed the flat rate plus a per-credit charge for each credit over 15.

Graduate School Tuition – Graduate students registered for 9 to 15 credits in the Fall and Spring Terms are regarded as full-time, and are assessed the current “flat” tuition rate for the Swanson School of Engineering. The Academic Year 2015-2016 Tuition Rates are:

| Resident Tuition, Per Term: | $12,201 |
| Non-Resident Tuition, Per Term: | $20,060 |

Additional Fees that are applicable to students regardless of Pennsylvania or Out-of-State Residency include: (Full-Time, per term)

<table>
<thead>
<tr>
<th>Fee</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Activity Fee</td>
<td>$80.00</td>
</tr>
<tr>
<td>Student Health Fee</td>
<td>$105.00</td>
</tr>
<tr>
<td>Computing and Network Services Fee</td>
<td>$175.00</td>
</tr>
<tr>
<td>Security, Safety, and Transportation Fee</td>
<td>$90.00</td>
</tr>
<tr>
<td></td>
<td>$450.00</td>
</tr>
</tbody>
</table>

Graduate Students registered for fewer than 9 credits are considered part-time and are billed on a per-credit basis.

Summer Term/Summer Sessions – Students registered during the summer term and/or summer sessions will be billed on a per-credit basis only, regardless of the number of credits taken.

Diversity and Sexual Harassment Training:

The Mechanical Engineering and Materials Science Department is pleased to provide diversity training to its graduate students through the Swanson School of Engineering Office of Diversity. All students are expected to participate in diversity and sexual harassment training the first time that it is offered after enrolling in classes. More information can be received from the Diversity Program Assistant at eodadmin@engr.pitt.edu or 412 624-9842.
Graduate Housing – There is no residence hall on campus for graduate students for the fall and spring terms. Accommodations are available throughout the summer term. Rates are available upon request from the University Housing and Food Services Office, which is located in the Litchfield Towers, Tower A, (412) 648-1100. The University has established a meal plan for which any registered student is eligible. Students may obtain board-plan information by contacting the Housing and Food Services Office.

Housing Resource Center, 127 North Bellefield Avenue (412) 624-6998, provides community listings of private rooms and apartments for rent continually throughout the year. The Housing Resource Center is open between 8:00 am and 4:30 pm, Monday through Friday. HRC website http://www.ocl.pitt.edu/ , phone: 412-624-6998, or e-mail: hrc@bc.pitt.edu
HRC lists University-owned efficiencies and one- and two-bedroom apartments for rent. As well as informative information concerning housing outside of University-owned property.

Student Status – **Continuing Student** is a student who was registered in the same academic center at the same level for any term within the last calendar year.

New Student is a student who is registering for the first time, or one who is registering in a different academic center (including regional campuses) or level from his/her last registration, regarding the registration process.

Re-Admitted Student is a student who has previously registered but not within the last calendar year. The student shall be considered the same as a new student registering for the first time, regarding the registration process.

Provisional Status – Students who are admitted to the program under provisional status must satisfy the conditions of his/her provisions to remove certain deficiencies in either coursework or academic achievement before being changed to full status.

Special Student Status – Students who are seeking advanced degrees but who are unable to meet the deadline for filing all required credentials for admission may be granted temporary admission provided they present acceptable evidence concerning their qualifications for graduate study. Regular admission must be accomplished within the first term of registration.

Students who are not seeking an advanced degree but who have specific qualifications for one or more courses, including courses required for learning or certification, may register for such courses subject to review by the department and the dean of the school. If a student should apply for admission to a degree program, a maximum of 6 credits may be applied toward a graduate degree.

Inactive Status - Students who have not registered for at least three (3) credits (eligible doctoral students at least one (1) credit of full-time dissertation study) during a 12-month period will be transferred automatically to inactive status and must file an application for readmission to graduate study (application fee required) before being permitted to register again. Students on inactive status cannot apply to graduate or take preliminary or comprehensive examinations. Also, students on inactive status are not eligible to use University facilities and should not expect to receive counseling from the faculty or active supervision by their advisor and committee.

Readmission – Readmission is not automatic nor does it necessarily reinstate the student to the academic status enjoyed prior to becoming inactive. When readmitted, the student must be prepared to demonstrate proper preparation to meet all current admission and degree requirements.

Registration Process – After being admitted to a graduate program, students may register for classes with their academic advisor. The registration period for a term or session is published in the
University’s Schedule of Classes (see http://www.registrar.pitt.edu/schedule_of_classes.html), in course descriptions, on calendars (including the University’s Academic Calendar at www.pitt.edu/~provost/calendar.html), and in numerous other publications.

Students registering for the first time are advised to complete registration well before the beginning of the term. Typically, the first day of classes is the last day for students to register. After the start of classes, registration for new and continuing students is permitted only in unusual circumstances and only with the written approval of the dean and the payment of a late registration fee.

Your registration will be processed in the Office of Administration, 253 Benedum Hall. Students are required to have the signature of their academic advisor on the registration form. The student's signature on the registration form creates a financial obligation to the University of Pittsburgh. Once students have registered, they may view their class schedules online at http://my.pitt.edu.

Registering for Full-Time Dissertation Study

Doctoral students who have completed all credit requirements for the degree, including any minimum dissertation credit requirements, and are working full-time on their dissertations may register for Full-Time Dissertation Study, which carries no credits or letter grade but provides students full-time status. Students so enrolled are assessed a special tuition fee but are still responsible for the full-time computer and network, security/transportation, student health, and activity fees. Students must consult with the dean's office of their school for permission to register for full-time dissertation study.

Registering for Two Independent Degree Programs Simultaneously – Students may pursue two independent graduate degrees simultaneously in two different schools within the University (joint degree) or two different departments within the same school (dual degree). Normally, such students should be enrolled for no more than a total of 15 credits per term. Special approvals and regulations apply before a student is allowed to register for courses in pursuit of two independent graduate degrees. See discussion in Special Academic Opportunities for further detail.

Registering for Cooperative, Dual-Degree, and Joint-Degree Programs – Dual- and joint-degree programs result in two degrees being awarded. Requirements for these programs include all or most of the requirements of two distinct academic degree programs. Dual programs exist within a single school; joint programs exist between two or more schools; cooperative programs are administered by two or more institutions. Before registering for courses in pursuit of a cooperative, dual-degree, or joint-degree program, a student must be admitted to both programs. See discussion in Special Academic Opportunities for further detail.

Cross-Registration – Carnegie Mellon University, Duquesne University, the Pittsburgh Theological Seminary, Robert Morris University, and the University of Pittsburgh offer graduate students the opportunity for cross-registration in graduate programs in the five institutions in the fall and spring terms. Credits earned by cross-registration in graduate courses at Carnegie Mellon, Duquesne University, the Pittsburgh Theological Seminary, and Robert Morris University, when approved in advance by the student's graduate advisor, are accepted as University of Pittsburgh credits for the purpose of the calculation of the quality point average and the completion of degree requirements. Each department at each institution retains the authority to establish the prerequisites for admission and the maximum enrollment in its own courses and to grant priority in registration to its own graduate students.

Cross-registration is only available in the fall and spring terms. Only full-time students may cross-register. Students who cross-register do not pay tuition to the host institution; however, they are responsible for any additional fees associated with the course such as laboratory fees, books, and the like. During the summer, students may attend one of the above colleges as guest students, but they must pay that institution's tuition and fees. Students are discouraged from cross-registering during
their term of graduation to avoid any delays in the receipt of course credit needed to graduate. Students should meet with their advisor before they cross-register. See also Cross-Registration Credit or visit the Pittsburgh Council of Higher Education (PCHE) (http: www.pchepa.org) for organization history and available program information.

Auditing Courses – With the consent of the school and instructor, students may audit a course and receive an N grade with the consent of the instructor and school offering the course. However, to audit a course, a student must register and pay tuition for the course. The N grade is not counted toward graduation or the QPA.

Adding and Dropping Courses – Students may add and drop courses only during the add/drop period. The dates for the add/drop period are listed in the University's Schedule of Classes, in course descriptions, on calendars (including the University's Academic Calendar at www.pitt.edu/~provost/calendar.html), and in numerous other publications. Students who no longer wish to remain enrolled in a course after the add/drop period has ended may resign from the University or withdraw from the course.

Resigning from the University for a Specific Term – If students decide to drop all of their courses after the add/drop period has ended and before 60 percent of the term or session has been completed, they must resign from the University for that term. Official resignation from the University requires students to contact the Student Appeals Office. Students have several options. They may resign in person, by mail, or by calling 412-624-7585, where students may leave a message 24 hours a day, including weekends and holidays. An R grade will appear on the student's academic transcript. Tuition is prorated from the date of the student's notification to the Student Appeals Office of the student's desire to resign, unless 60 percent of the term has been completed, in which case there is no refund.

After the 60 percent point of the term or session has passed, students who wish to terminate their registration may process withdrawal from all classes only with the permission of their academic dean. If the reason for withdrawal is medical or psychological in nature, the academic dean may consult with the director of the Student Health Service prior to making a determination. There is no financial adjustment associated with this procedure, which results in the assignment of W grades for the courses.

Monitored Withdrawal from a Course - After the add/drop period has ended, students may withdraw from a course that they no longer wish to attend by completing a Monitored Withdrawal Request form in the office of the school offering the course. Students must process the Monitored Withdrawal Request form within the first nine weeks of the term in the fall and spring. Because summer sessions vary in length, students should check the summer Schedule of Classes for those deadlines. Students should check with the school offering the course for the last day to submit a Monitored Withdrawal Request form. The grade W will appear on the student's grade report and transcript. There is no financial adjustment to students’ tuition or fee obligations involved in withdrawing from courses, but withdrawing may jeopardize satisfactory academic progress, financial aid, and assistantships or fellowships.

Transfer Procedure – The application of a graduate student from another graduate school is treated in the same way as a new application, and the same procedure for application is followed. This includes the transfer into an engineering graduate program from another school in the University of Pittsburgh. After a transfer application is formally accepted, the student may apply for transfer of graduate credits from another accredited institution to the University with the major adviser’s recommendation and the dean’s approval. However, no transfer credit will be accepted for courses in which grades lower than B, or its equivalent, has been received or which are no longer considered as graduate-level courses by the department. A graduate student may apply for
a maximum of six (6) transfer credits toward the MS degree. No more than 30 credits may be accepted for a master’s degree awarded by another institution to meet the minimum credit requirement for the Ph.D. degree. However, in recognition of graduate study beyond the master’s degree successfully completed elsewhere, up to twelve (12) additional credits may be accepted at the time of admission to meet the minimum credit requirement. Thesis and dissertation credits are not transferable.

Online Courses - Two courses (six credits total) may be taken from an appropriate academic program. These courses must be:

1. Appropriate for the student’s academic program and typically not available on the Oakland campus
2. Approved by the graduate coordinator and then approved by the Associate Dean for Academic Affairs

Grading – Quality Point Average (QPA) and Grade Point Average (GPA) are numerical indications of a student's academic achievement. QPA is the average of letter grades earned toward a degree. GPA is the average of total letter grades earned.

Academic Standards – An average of at least B (QPA=3.00) is required in the courses that make up the program for any graduate degree. Students with full graduate status are automatically placed on probation whenever their cumulative QPA falls below 3.00. Each school determines the restrictions placed on a student on probation.

A student on provisional or special status or on probation is not eligible to take the PhD preliminary evaluation or the MS or PhD comprehensive examination, or to graduate.

Grading System – The University of Pittsburgh has a standard letter grade system (see Letter Grades below). Some additional grading options are available in some courses as determined by the school and the instructor (see sections below on University Grading Options and Other Grades). Students are subject to the grading system of the school in which they are taking the course.

University Grading Options

Individual schools may elect to offer one of the following grade options for its courses:

- **LG** Letter Grade
- **H/S/U** Honors/Satisfactory/Unsatisfactory
- **S/N** Satisfactory/Audit
- **LG and H/S/U** Letter Grade and Honors/Satisfactory/Unsatisfactory
- **LG and S/N** Letter Grade and Satisfactory/Audit

From among the grading options approved by the school, each department identifies those it deems acceptable for its courses. Furthermore, course instructors may specify, within the grading options approved by the school and department, which grading options may be selected by students taking their course.

Students should choose a grading option from those listed with the course in the Schedule of Classes. Grade Option/Audit Request forms for graduate courses are required by the School of Engineering. Forms are available in Mechanical Engineering, 648 Benedum Hall and the Office of Administration, 253 Benedum Hall.
Students receive the grade H or S for satisfactory work and U for unsatisfactory work. The grades H and S are counted toward graduation but not the student's QPA. The grades N and U are not counted toward graduation or the QPA. The S grade indicates adequate graduate attainment; in evaluating thesis or dissertation research, an instructor may only use the S/N grading option. All thesis/dissertation credits remain Incomplete, “I” grade until the student successfully defend his/her thesis/dissertation.

Letter Grades

The University's letter grade system for graduate courses is as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Quality Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.00 Superior Attainment</td>
</tr>
<tr>
<td>A-</td>
<td>3.75</td>
</tr>
<tr>
<td>B+</td>
<td>3.25</td>
</tr>
<tr>
<td>B</td>
<td>3.00 Adequate graduate-level attainment</td>
</tr>
<tr>
<td>B-</td>
<td>2.75</td>
</tr>
<tr>
<td>C+</td>
<td>2.25</td>
</tr>
<tr>
<td>C</td>
<td>2.00 Minimal graduate-level attainment</td>
</tr>
<tr>
<td>C-</td>
<td>1.75</td>
</tr>
<tr>
<td>D+</td>
<td>1.25</td>
</tr>
<tr>
<td>D</td>
<td>1.00</td>
</tr>
<tr>
<td>D-</td>
<td>0.75</td>
</tr>
<tr>
<td>F</td>
<td>0.00 Failure</td>
</tr>
</tbody>
</table>

Other Grades: Incomplete, Withdraw, Resign – Upon a student's completion of a course, one of the grades listed below may appear on the student's transcript in lieu of one of the options selected by the student and/or instructor under University Grading Options. None of these grades carries quality points. Students should consult with their individual school for information on any school-specific regulations regarding these grades.

G Grade – The G grade signifies unfinished course work due to extenuating personal circumstances. Students assigned G grades are required to complete course requirements no later than one year after the term in which the course was taken. After the deadline has passed, the G grade will remain on the record, and the student will be required to reregister for the course if it is needed to fulfill requirements for graduation.

I Grade – The I grade signifies incomplete course work due to nature of the course, clinical work, or incomplete research work in individual guidance courses or seminars.

W Grade – The W grade signifies that a student withdrew from the course. See Monitored Withdrawal from a Course for more information.

R Grade – The R grade indicates that a student has resigned from the University.

Z Grade – The Z grade indicates that an instructor has issued an invalid grade.
Repeating Courses – A student may repeat any course in which a grade of B- or lower is received if an authorization to repeat the course is given by the student's advisor and/or department. A school may restrict the type and/or number of different courses that may be repeated during one degree program. The grade earned by repeating a course is used in lieu of the grade originally earned, although the original grade is not erased from the transcript. No course may be repeated more than twice. No sequence course may be repeated for credit after a more advanced course in that sequence has been passed with a B or higher grade. The repeated course must be the same as that in which the original grade was earned. In extenuating circumstances, a department chair, with the dean's approval, may substitute another course of similar content. Grades of W, R, or N reported for the repeated course will not be counted as a course repeat. To initiate only the last course grade being computed in the QPA, a Course Repeat form must be filed with the dean's office.

Changing Grades – The instructor of a course may change a student's grade by submitting a Change of Grade Card. All grade changes require the authorization of the dean of the school from which the original grade was issued. While each school may determine a time limit for grade changes, they should be processed no later than one year after the initial grade was assessed. Changes in I grades are exempt from this one-year policy.

Grade Report – At the end of each term, a grade report is prepared by the Office of the University Registrar and mailed to the student, provided that all charges have been paid. This report shows credits carried, the grade received in each course, and quality points earned. Shortly after the term ends, students can also access their grades online via the secure server at http://student-info.pitt.edu.

Grade Access - Grades are available through the University Portal at approximately 10:00 am the morning after the day grades are due in the Registrar's Office. Grade information, including grade changes, will continue to be available online using the Student Services Community in http://my.pitt.edu. If one of your instructors submits grades after the established deadline, your record will not reflect a grade for that course until the next posting date. Questions about the actual grade awarded should be directed to the individual instructor or the department chairperson. Once grades have been posted, update requests must be submitted via Grade Change Request forms and processed through the proper Deans Office. Changes will appear as they are received and processed in the Office of the University Registrar.

To access your record on the web, log on to Student Self Service through http://my.pitt.edu and follow the menu path: My Communities>Student Self Service>View my Grades

If grade verification is needed for employer reimbursement, or for any other reason, you can obtain a copy of your transcript in G-3 Thackeray Hall. You can also visit the University Registrar's Office website for more information on how to obtain a transcript by mail.

If you have any outstanding financial obligations to the University, you will not be able to view your record online, or obtain a transcript until payment arrangements are completed.

Probation, Suspension, and Dismissal – Students who fail to make satisfactory progress may be subject to academic probation and/or suspension and dismissal. Students who have completed at least 9 quality point credits and whose QPA falls below 3.00 will be placed on academic probation by the dean of the school. After a certain period of time on academic probation (the period is determined by the School of Engineering), a student is subject to academic suspension and restricted from registering for classes in that school. Students on probation are not eligible to take the PhD preliminary evaluation or the MS or PhD comprehensive examination, or to be graduated.

Effect on Financial Aid and Scholarships – Conditions for loan eligibility and many scholarships (including those for teaching assistants, teaching fellows, graduate student assistants, and graduate
student researchers) usually require students to complete a specified number of credits each year and maintain a specified quality point average (QPA: credits counted toward the degree). Questions about the effect of unsatisfactory academic standing on loans should be directed to the Office of Admissions and Financial Aid in Alumni Hall (4227 Fifth Avenue) at 412-624-7488. Questions about the effect of unsatisfactory academic standing on scholarships, including teaching and research assistantships, should be directed to the department.

Statute of Limitations – The purpose of the statute of limitations is to ensure that a graduate degree from the University of Pittsburgh represents mastery of current knowledge in the field of study. Individual schools within the University may adopt policies that are more stringent, but not less, than those stated here.

All requirements for MS degrees must be completed within a period of four consecutive calendar years from the student's initial registration for graduate study; all professional master's degrees, within five years. Dual degrees and joint degrees that require course work in excess of 50 credit hours may be granted a longer statute of limitations by the University Council on Graduate Study.

From the student's initial registration for graduate study, all requirements for the PhD degree must be completed within a period of 10 years, or within eight years if the student has received credit for a master's degree appropriate to the field of study. A student who is unable to complete all degree requirements within a five-year period after passing the comprehensive examination may be re-examined at the discretion of the department or school. Programs for professional doctoral degrees, for which the majority of candidates pursue part-time study while working full-time within their chosen disciplines, may be granted a longer statute of limitations by the schools offering the degrees.

Under exceptional circumstances, a candidate for an advanced degree may apply for an extension of the statute of limitations. The request must be approved by the department or departmental committee (master's or doctoral) and submitted to the dean for final action. Requests for an extension of the statute of limitations must be accompanied by a departmental assessment of the work required of the student to complete the degree as well as documented evidence of the extenuating circumstances leading to the requested extension. Students who request an extension of the statute of limitations must demonstrate proper preparation for the completion of all current degree requirements.

Leave of Absence – Under special conditions, graduate students may be granted one leave of absence. A maximum leave of two years may be granted to doctoral students or one year to master's students. The length and rationale for the leave of absence must be stated in advance, recommended to the dean by the department, and approved by the dean. If approved, the time of the leave shall not count against the total time allowed for the degree being sought by the student. Readmission following an approved leave of absence is a formality.

Registration Status at Graduation
All graduate students must register for at least 1 credit or full-time dissertation study during the 12-month period preceding graduation (that is, must be on active status) and must be registered for the term in which they plan to graduate. In exceptional circumstances, students who complete all the degree requirements at the end of a term but graduate in the next term may petition the dean of the school for a waiver of this registration requirement. Waivers may be obtained by submitting a written request to the Office of Administration. The request should be based on extenuating circumstances, e.g., inability of the student's dissertation committee to meet during the final term when a student has given reasonable notice or the student has completed all degree requirements in a previous term. Waivers will not be granted to students who are inactive. The requirement that a student be on active status cannot be waived.
Application to Graduate – Students must file an application for graduation in the department or the Office of Administration (151 Benedum) early in the term in which graduation is expected. Each school establishes its own deadline by which students must apply for graduation. Students should check with the graduate secretary for the deadline. As noted above, students must be active.

Prior to the end of the term in which they graduate, all doctoral candidates must submit to the dean's office a completed Survey of Earned Doctorates.

If your graduation is postponed, you must reapply through the department or the Office of Administration (151 Benedum) by completing another Graduation Application.

Certification for Graduation – The Graduate Faculty of the department or program evaluates the performance of the student. If that performance is satisfactory, a report should be submitted to the dean certifying that the candidate has satisfactorily completed all departmental requirements for a graduate degree. The dean, after confirming that the overall school and University requirements have been met, certifies the candidate for graduation.

Commencement
The University of Pittsburgh holds one annual commencement. It usually occurs on the last Sunday in April and is held at the Petersen Events Center. Students who graduate within a graduation year are invited to attend. A graduation year encompasses June, August, December of one year and April and May of the following year. (Example: June through December of 2002 and April and May of 2003 graduates will be invited to the 2003 Annual Commencement.) The Office of Special Events makes all of the arrangements for commencement. A "Graduation Central" is held approximately two weeks prior to commencement. Students are able to pick up their regalia, tickets, and other information regarding Commencement during this two-day event. You should contact the Office of Special Events, if you have any questions concerning commencement. Their address is 1200 Bruce Hall; their telephone number is (412) 624-7100.

Transcripts – An academic transcript serves as a permanent record of a student's academic progress. The transcript is a cumulative record of the student's QPA, as well as a record of the department, title, and grade for each course in which the student has enrolled. Students may request an official transcript that bears the seal and the signature of the University registrar. Upon graduation, the transcript reflects a student's degree and date; major; and, if applicable, honors, area of concentration, and minor.

Official Transcripts – Official transcripts are available from the Transcript and Certification Office in G-3 Thackeray Hall. Each page of your entire University of Pittsburgh transcript is included. The transcript is printed on security paper and bears the seal and signature of the University Registrar.

There will no longer be a $3.00 fee for transcripts for students and alumni, but companies requesting your transcript must still pay the fee. However, current fees for services will still be assessed to all other groups and individuals. There is a fee of $20.00 for overnight delivery within the continental United States (This fee is subject to change). International fees vary. If express fees are not paid within ten working days, there is an additional $10.00 service fee. Transcripts cannot be faxed.

If you have an outstanding financial obligation to the University, your transcript will be withheld until your account is paid in full.

REQUEST IN PERSON – To request a copy of your official transcript in person, you must complete and sign a Transcript Request form available in the Transcripts and Certification area in G-3
Thackeray Hall. You may use this form to designate the address to which your transcript should be sent. All transcript requests submitted in person require photo identification.

REQUEST BY MAIL - To order a copy of your transcript, please fill-out and mail the printable Transcript request form available on http://www.registrar.pitt.edu/transcripts.html. If you are requesting overnight service, please make your check or money order payable to the University of Pittsburgh. Transcripts cannot be accepted by telephone or e-mail.

Unofficial Transcripts – As a currently registered student, you are entitled to a copy of your unofficial transcript. Your unofficial transcript contains the same information as the official transcript, but it is printed on white paper and does not bear the seal and signature of the University Registrar. To obtain your unofficial transcript, you must make your request in person in G-3 Thackeray Hall and present your valid University ID card at the time.

Diplomas – Your diploma, along with a complimentary official copy of your final transcript, will be mailed to you at no charge approximately four weeks after the end of your term of graduation. We will use the address on your Graduation Application unless you change it. See the online printable Address Change Form available on http://www.pts.pitt.edu/mailserv/customer/change.html. Check your transcript carefully. Any discrepancies should be brought to the attention of the appropriate office immediately.

Additional copies of your diploma may be purchased any time after graduation. Requests for additional diplomas can be made by completing the online printable Diploma Reorder Form available on http://www.registrar.pitt.edu/diplomas.html, print it, and deliver it to G-3 Thackeray Hall or mail it, with required payment, to:

Diplomas
Office of the University Registrar
G-3 Thackeray Hall
University of Pittsburgh
Pittsburgh, PA 15260

The fee for each diploma, including mailing, is $25.00. The fee for Professional or University Honors College diplomas is $50.00. The reorder process takes approximately four weeks. Diplomas will be in the current style and font and bear the signatures of the current administrators.