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DOES SELF-REGULATION REDUCE POLLUTION? 

RESPONSIBLE CARE IN THE CHEMICALS INDUSTRY 
 

Abstract 

Responsible Care (RC) is a worldwide self-regulation program, whose codes of conduct include 

pollution reduction beyond existing regulations. We estimate the impact of RC on plant-level 

pollution intensity in the US chemical manufacturing sector, correcting for self-selection using 

characteristics of other plants belonging to the same firm. In a panel of 1,523 firms which own 

2,735 plants between 1988 and 2001, we find that plants owned by RC participating firms do not 

reduce their pollution intensity relative to statistically-equivalent plants owned by non-RC 

participating firms, either on average or for various subsets of plants. Perversely, in several 

specifications, the former raise their toxicity-weighted air pollution intensity by 7-9% relative to 

the latter, a sizable amount compared to the 6% average yearly decline of that figure for all 

plants. Therefore, it is premature to rely on similarly designed self-regulation programs, i.e., 

without third-party certification or penalties for non-performance, to reduce pollution. 
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1.   Industry Self-regulation: Responsible Care 

Self-regulation programs, in which industry associations set codes of conduct for their 

members against the backdrop of mandatory government regulations, are prevalent worldwide 

[1]. Self-regulatory programs operate in high risk industrial sectors, including the Institute of 

Nuclear Power Operations, Strategies for Today Environmental Partnership, and Responsible 

Care in the nuclear, petroleum and chemical industries, respectively [2]. Our study asks: did self-

regulation in the US chemical manufacturing sector reduce plant-level pollution intensity?  

In response to the Bhopal accident, the American Chemical Council (ACC) created 

Responsible Care (RC) in 1989 and mandated participation in RC for its members.1 We study 

RC for three reasons. First, RC’s Pollution Prevention (PP) Code, which aims “to achieve 

ongoing reductions in the amount of all contaminants and pollutants released to the air, water, 

and land from member firm’s plant” can be quantified and thus evaluated  [3].2 RC members are 

required to submit their annual self-assessment of their progress toward code implementation, 

signed by the firms’ CEOs, to the ACC [4]. Second, RC shares key features of other prominent 

self-regulatory programs, including Climate Leaders, a greenhouse gas reduction program, in 

particular, the absence of third-party certification pre-2002 and penalties for non-performance [4, 

5]. Third, despite scarce empirical evidence on its performance, policymakers have stated that 

RC is an effective program that should be emulated by other industries [6]. 

Our study improves upon Lenox and King’s [7] seminal empirical assessment of RC in 

three ways. First, we address firms’ self-selection into RC, a source of estimation bias [8,9], with 

two sets of instruments: (i) for multi-plant firms, we use instruments based on the exogenous 

                                                 
1 The American Chemical Manufacturers’ Association was renamed the American Chemical Council. 
2 Unlike RC, self-regulatory programs in other concentrated industries are typically adopted by almost all firms 
in the industry at the same time period, making it difficult to identify program effects. 
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characteristics of other plants belonging to the same firm that affect the likelihood of the firm 

participating in RC, as these characteristics are unlikely to be related to the individual plant of 

interest’s pollution; and (ii) for single and multi-plant firms, we use three other instruments - the 

share of plants in the given sub-industry participating in RC, firms’ lagged RC participation, and 

firms’ participation in the ACC before the introduction of RC – factors that are related to the 

costs and benefits of firms joining RC, but are less likely to affect plants’ pollution directly other 

than through the RC program.  Second, in constructing our plant-level panel database of the US 

chemical sector, we have been able to compile plant-level employee data from Dun & Bradstreet 

(D&B), which allows our study to better address, albeit imperfectly, the confounding effect of 

output fluctuations. Third, we examine the heterogeneous impact of RC on plants with specific 

characteristics because according to Dawson and Segerson’s theoretical study [10], a subset of 

plants may reduce their pollution in self-regulatory programs, even if other plants free-ride.   

 Our study of 1,523 firms that own 2,735 plants, spanning 1988 to 2001, finds that on 

average, plants owned by RC participating firms did not reduce their pollution intensity relative 

to statistically equivalent plants owned by non-RC participating firms. These results are robust to 

multiple measures of pollution and pollution intensity and to various time periods and 

subsamples. Allowing for the possibility of heterogeneous program effects, we find only a small 

subset of plants had reductions in pollution intensity that we can attribute to the program, while a 

much larger subset experienced significant increases. In a few specifications, we even find that 

RC participants on average increased their toxicity-weighted air pollution intensity by 7-9% 

compared to statistically equivalent non-RC participants. This increase among RC participants is 

sizable when compared to the yearly decline of 6% for the average toxicity-weighted air 
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pollution intensity of all plants in our sample between 1990 and 2001.3  Based on our estimates, 

the switch from non-participation to participation in RC would wipe out approximately a year of 

this trend. From a policy perspective, we conclude that it would be premature to rely on self-

regulation programs that mirror RC before 2002, i.e., without third party verification or 

enforceable penalties for non-performance, as a tool to reduce environmental risks.  

2.   Responsible Care – empirical evidence 

The Deep Horizon and Bhopal accidents [1,11] illustrate that firms face a collective 

action problem in maintaining their industries’ reputation as socially responsible actors. One 

firm’s adverse actions can impose costs on other firms in the industry.  Therefore, while every 

firm in the industry would be better off if each firm were to act in a socially responsible way, 

individual firms do not have the incentive to act in this manner.  Proponents argue that self-

regulation programs can resolve this problem, by limiting their membership to firms that commit 

to their codes of conduct, and thereby providing a mechanism for participants to signal that they 

are undertaking superior risk management processes [12]. Participants benefit from this 

reputation in their interactions with consumers, investors, activists and regulators [13,14]. 

Participation may reduce inspections by regulatory agencies [14,15 ] and discourage boycotts by 

environmental groups or pre-empt their lobbying for stricter regulations [16,17]. Dawson and 

Segerson’s [10] theoretical study of pollution regulations show that even if other firms free-ride, 

a critical number of firms, will reduce their pollution in order to maintain the overall credibility 

of the self-regulation program. These firms would incur larger costs of stricter regulation should 

the self-regulation program fail.  In contrast, opponents argue that these programs do not provide 

sufficient incentives for firms to undertake costly actions to reduce their adverse environmental 

                                                 
3 The annual decline is 11.8% for RC participants and 2.6% for non-participants between 1990 and 2000. 
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impacts [1,18].  Givel [11], drawing on previously confidential ACC documents, argues that RC, 

which did not require third party certification of members’ performance pre-2002 and did not 

impose penalties on members’ failure to implement codes of conduct, was a publicity effort to 

stave off regulations.  

The fundamental empirical question is – has RC reduced, left unaffected or raised 

pollution intensity? In King and Lenox [7]: (i) their GLS model, which does not correct for self-

selection, finds that participants reduce their pollution at a slower rate than  non-participants; and 

(ii) their fixed effects model, which addresses the selection issue, finds that the RC coefficient is 

not statistically significant. Nevertheless, it is difficult to draw conclusions from that study for 

two reasons. First, the direction of bias arising from self-selection is a priori unknown – the GLS 

model could have understated RC’s effect on pollution reduction if firms that self-select into RC 

are those that face more difficulties in reducing pollution, and join in order to benefit from 

shared best practices.4 Conversely, if the firms that self-select into RC are those that will reduce 

their pollution regardless of RC participation, the failure to correct for self-selection would 

overstate RC’s effect on pollution reduction. Second, their statistically insignificant coefficient in 

the fixed effects model could have resulted from (1) imprecise estimates due to the reliance of 

identification on few plants that switched status and (2) attenuation bias resulting from their use 

of production ratio data that is at best, noisy and at worst, uninformative [19].5 

3.    Estimation Method 

3.1   Method  
                                                 
4 Comparison of our GMM and OLS estimates indicates that this form of self-selection is dominant during our 
study period. 
5 Our analysis of the data and our conversation with researchers and EPA region 1 personnel suggest that the 
variable does not, in practice, capture plants’ annual changes in output. Moreover, the American Petroleum 
Institute’s survey notes that its members do not have well-established methods for estimating this variable. 
E.g., a plant that faced a 20% reduction in output may report a production ratio value of 0.8, 8 or 80. 
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We estimate the impact of RC by comparing plants owned by RC participating firms with 

statistically equivalent plants owned by non-RC firms, i.e. both the average treatment effect and 

the effect conditional on plant and firm attributes. We achieve this comparison by using 

instrumental variables to control for firms’ self-selection into the RC program. We model the 

firm’s decision to participate in RC separately from the plant’s pollution equation.  This 

distinction helps us to motivate valid instruments i.e., variables that are related to the plant’s 

owner’s participation in RC, but do not directly affect the plant’s pollution. 

3.2   Model.  

               –     

(Pollution: Equation 1)         

Pollution in time t is affected by the characteristics of plant j owned by firm i in time t (x1ijt), 

characteristics of parent firm i (x2it), the observed participation status of the plant’s parent (pijt), a 

subset of plant characteristics which affect the impact of RC (x3ijt), and an unobserved 

component (μijt).  We also include lagged pollution, yijt-1, to capture persistence in plant 

technology.  The first term (x1ijtβ1) accounts for the effect of the covariates on pollution 

regardless of RC status.  The second term (pijt δ1) captures the effect of RC on the average plant, 

while the third term (pijt (x3ijt –  )δ2) captures the impact of RC that varies by plant 

characteristics.  We demean the x3 variables in the third term in order to consistently estimate the 

effect of RC on an average plant with the δ1 coefficient.  

The unobserved component is made up of industry sub-sector and year components,6 as 

well as an idiosyncratic shock,  μijt  = ηSICj + ζt +  εijt. We restrict the shocks (εijt) to be mean zero, 

                                                 
6 We also estimated the model using sub-industry and year interaction dummies, and we used plant dummies instead 
of lagged pollution to capture persistent technology. In addition we used an Arellano-Bond estimator including plant 



 
 

8 
 

and independent across firms, but allow them to be correlated within the same firm.  In addition, 

we place no restrictions on the variance of the errors.  Because we find evidence of 

heteroskedasticity, we use a GMM estimator that is more efficient than the standard IV 

estimator.   

Firms choose to participate in RC if they believe the benefits accrued across their plants 

exceed the cost of membership and adhering to the goals of the program. 

   ∑   (Firm Participation:  Equation 2)  

 is not directly observed, but firm i chooses to join RC in time t if ( ≥ 0).    This latent 

variable equation can be interpreted as firms choosing to join RC if they receive positive net 

benefits from participation.  The net benefits are a sum of the plant-specific benefits from each of 

a firm’s plants, ∑ , firm-level factors that also affect pollution,  , firm-level 

characteristics unrelated to pollution , and an idiosyncratic shock, ξit. 

The estimation complication arises due to the correlation between (ξit, μijt) as unobserved 

factors that affect the participation decision may also effect plant-level pollution. We examine 

factors that affect the likelihood of a plant being owned by a member of RC to construct 

excluded variables. Based on Equation 2, the likelihood of a plant j being a member of RC, can 

be written as:  

  1 ∑ 0   (Plant Participation: Eq. 3) 

Equation 3 is not a structural equation because the decision to join RC is made at the firm level, 

but it motivates our instruments and it provides an estimating equation to use to generate 

additional instruments for the participation interactions pijt (x3ijt – ). 

                                                                                                                                                             
fixed effects and lagged dependent variables.  However, in each case, we found qualitatively similar results to our 
OLS and GMM estimates, with the OLS results biased in the same direction. 
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 ∑ , captures exogenous characteristics of other plants owned by the same 

firm, which affect the firm’s cost of adhering to RC’s standards, but do not directly affect 

pollution at the plant of interest.  For example, if Dow Chemical needs to improve pollution at a 

plant in New Jersey due to local regulatory or political pressure, it may reduce the costliness or 

increase the benefit of the company joining RC and therefore may affect the likelihood of all 

Dow plants being in the program.  However, it would not directly cause Dow to reduce pollution 

at a plant in Louisiana. 

We control for the endogeneity of (pijt), and therefore (pijt (x3ijt – ))using a GMM 

estimator of the pollution equation.  We instrument for participation (pijt) using the instrumental 

variables, ∑ ,  described below.  We could use the estimated participation 

probability from Equation 3 to instrument directly for observed participation.  However, it would 

leave us with an equal number of excluded variables and endogenous covariates, restricting our 

use of well-defined over-identification tests. Because the validity of our instruments is crucial to 

our analysis of this voluntary program, we opt to directly include each of the instruments in our 

estimator. 

 In specifications where we allow the effect of RC to vary with firm characteristics, we 

use the Logit estimates of the probability of participation, ( ̂ ) interacted with demeaned 

covariates to instrument for (pijt (x3ijt – x̄ 3)).    Estimates of the participation probability are 

correlated with (pijt) and independent of (μijt) by construction.  Therefore, when interacted with -

the demeaned covariates, they are valid instruments for (pijt (x3ijt – x̄ 3)).   

In addition, because we include lagged pollution as a potentially endogenous covariate, 

we include pollution two years prior as an additional instrument. This makes our estimates robust 

to first-order serial correlation in the errors.   
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The estimated effect of RC on the pollution of an individual plant is:    

      – .   (RC impact on pollution: Equation 4) 

We use the Delta Method to calculate the standard errors of these estimates and 

determine for which plants the program has a significant effect on pollution. The variance of the 

estimated effect of RC on a given plant is given by, 

1  –  ΣRC 1  –  

where ΣRC is the variance-covariance matrix of the coefficient estimates of RC variables.   

3.3    Dependent variable 

We measure the impact of RC on plants’ pollution and pollution intensity. We limit our 

analysis to chemicals whose TRI reporting requirements are consistent since 1988.  We use 

toxicity-weighted pollution to control for variation in the toxicity of chemicals. To account for 

pollution intensity, we use plant-level number of employees as an imperfect proxy for output. 

Given the absence of publicly available output data, we check the robustness of our results to 

alternative normalization strategies.   

3.4    Control variables 

We account for factors that influence participation in RC and plants’ pollution, as noted 

in past studies on self-regulatory and voluntary programs [20, 21]. We account for plant size, 

using the log of the lagged plant-level number of employees. We account for firm size, using the 

log of the lagged firms’ employees across plants, and the number of plants owned by the firm. 

Larger firms may have greater financial resources to invest in pollution abatement. Larger firms 

may also face greater demand, and therefore, have more to gain from signaling green to their 
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consumers [20]. We include a dummy variable for single-plant firms to capture the differences 

between a single-plant firms, and multi-plant firms.  

We include industry-level variables at the 4-digit SIC level (SIC-4), i.e., producer price 

index, shipment quantity index, the Herfindahl-Hirschman index and SIC-4 dummies. The 

quantity and price indices are normalized to 100 within the specific SIC-4 code in 2000. The 

Herfindahl-Hirschman index is calculated using the value of shipments of the largest 50 firms in 

the SIC-4 code, as reported in the quinquennial Census of Manufacturers. Data for interceding 

years is linearly interpolated. We also include year dummies to control for changes in federal 

regulations and available technologies. We control for the neighborhood pressure on plants, 

measured at the census tracts where the plants are located. The measures are the median income 

at the census tract, the percentage of the census tract that is inside an urban area (percent urban), 

the percentage of the population in the tract that is white, and the percentage with less than a 

high school degree (low-educated).  

The rationale for the following variables is analogous to that outlined for the firm-level 

variables described below for instruments 1-3. A plant’s participation in a higher polluting sub-

industry is captured by the plant’s SIC pollution index. This variable is defined as the ratio of (a) 

average pollution intensity in the plant’s SIC 28xx to (b) average pollution intensity in the entire 

SIC 28. We also account for plants’ share of pollution that is subject to Maximum Availability 

Control Technology (MACT) standards. In addition, we control for plants’ lagged pollution, 

instrumented using the plants’ pollution two years prior. Plants with larger amounts of pollution, 

due to dependence on polluting technology may find it more difficult to abate pollution. 

Alternatively, with diminishing returns to abatement, such plants may have more options for 

abatement.  
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3.5 Instrumental variables  

The RC membership decision is made at the firm-level and is the same for all of the 

firm’s plants, while pollution performance is specific to each plant. This feature of the RC 

program allows us to construct variables that are correlated with the likelihood of a plant’s owner 

being in RC, but that do not directly affect a plant’s pollution.  This identification strategy 

implicitly assumes that there are no spillovers across plants in pollution reducing technologies. 

Implementation of new technology or processes at one plant does not make it significantly less 

costly to reduce pollution at other plants owned by the same firm.  We check the validity of this 

assumption using over-identification tests.  

Our approach to the construction of the first three of six instruments, described below, 

follows one commonly used in the industrial organization literature.  For example, Berry et al. 

[22] use functions of the characteristics and cost shifters of all other products as instruments of a 

product’s unobserved attributes.  Nevo [23] uses the average prices of the same product in other 

cities in the region as instruments for a product’s price in a given city.  The drawback of these 

three instruments is that they are undefined for single plant firms, which make up approximately 

a quarter of our sample.  Therefore, we estimate the model for plants owned by multi-plant firms 

(the “multi-plants” sample) using all six types of instruments, and then separately for all plants 

(the “all-plants” sample) using only the last three instruments.   

Instrumental variable 1: Firms’ plant-level share of pollution subject to MACT standards  

The Clean Air Act requires the EPA to set stringent technological regulations to reduce 

Hazardous Air Pollutant (HAP) pollution. Among TRI chemicals, 188 are HAPS. These 

regulations, labeled MACT standards, require new and existing chemical plants to install the 

technology that has been adopted by plants in the same production category that have achieved 
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the best pollution control and the lowest pollution [24].  Plants emitting a significant amount of 

HAPs will have to reduce their pollution, even in the absence of RC. This mandate to reduce 

HAPs causes their parent firm to face less additional costs to comply with RC. Therefore, at the 

plant-level, the share of pollution subject to MACT standards is likely to affect participation and 

pollution.  The share of pollution subject to MACT standards at other plants owned the same 

firm, will affect the likelihood of the parent joining RC, but should not directly affect the 

pollution of the plant of interest.  Therefore, as with Instrumental Variables 2 and 3, we exclude 

the plant of interest when calculating the firm-level variable to ensure exogeneity. 

Instrumental Variable 2:  Firm’s participation in more heavily polluting sub-industries 

(Firm’s SIC’s pollution index)  

This variable captures the extent to which a firm operates in dirtier sub-industries. Part of 

the technological options for pollution abatement is specific to sub-industries. Firms that operate 

in more pollution-intensive sub-industries may find it more costly to reduce pollution due to their 

greater reliance on pollution-intensive technologies. On the contrary, if there are diminishing 

returns to pollution abatement, those firms may have cheaper options to reduce pollution [20].  

We measure the pollution intensity of a sub-industry as the ratio of (a) the average 

pollution/employee of plants operating in SIC-28xx to (b) the average pollution/employee of all 

plants operating in SIC-28. In creating this variable for plant j, we average the sub-industry 

pollution intensities for all other plants belonging to the firm that owns plant j.  

Instrumental Variable 3:  Firm’s plants’ neighborhood characteristics 

 This set of variables measures the neighborhood pressure for firms to join RC.  We use 

demographic measures of the urban density, percentage of the population that is white, 

percentage with less than a high school diploma, and the percentage living below the poverty 
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line.  We also include county-level National Ambient Air Quality Standards (NAAQS) non-

attainment status. These variables capture the location specific effects that may influence both 

the pollution of a plant and the likelihood their parent will join RC.  As in instruments 1 and 2, in 

creating instrument 3 for plant j, we average the characteristics of all plants belonging to the firm 

that owns plant j, excluding plant j itself. 

Instrumental Variable 4: RC participation within the Sub-Industry 

This instrumental variable is the likelihood of RC participation by other plants in the 

same sub-industry.  It is calculated as the ratio of the number of plants that are RC members to 

the total number of plants operating in the same 4-digit SIC code in the given year, excluding the 

plant of interest.  If other plants in the same sub-industry are members of RC, there may be 

pressure for that plant to join as well, or there may be features of the sub-industry that make RC 

appealing. Conditional on RC, this variable would be independent of pollution given that we 

already include SIC-4 fixed effects in the pollution equation.  

Instrumental Variable 5: Lagged RC participation 

A plant that belongs to a firm that is an RC participant in time (t-1) is more likely to belong to an 

RC participating firm in time t. Persistence in a firm’s participation is likely, as the cost of 

continuing participation may be less than the cost of a new member joining because of members 

may have already implemented new systems and procedures to adhere RC’s standards.  In 

addition, firms already participating in RC may find it costly to switch out of the program as it 

may send a negative signal to their consumers or to regulators about their conduct.  The plant 

would change its RC status if the firm changes its RC status, if the firm merges with another 

company, or the plant is sold to another firm with a different RC status. 

Instrumental Variable 6: Participation in ACC prior to RC  
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Prior to the creation of Responsible Care in October 1989, firms that were already ACC 

members were likely receiving a positive net benefit from the trade association aspects of the 

program.  These benefits accrued from activities such as public relations and lobbying efforts, 

and shared best-practices.  After RC was implemented and was a condition of membership in the 

ACC, the ACC did not change its mission. They simply added additional obligations and 

benefits. Membership then included both the benefits and costs of being a part of the trade 

association, along with those from the self-regulation program.  Therefore, holding all else 

constant, firms which were members prior to RC were more likely to receive a positive net 

benefit from the trade association or self-regulation benefits of RC compared to firms that had 

not yet joined ACC.   

4  Data 

Our data comprise plants which are both required to report their pollution to the TRI and 

which report their number of employees to D&B. The self-reported TRI data is one of the few 

comprehensive sources of pollution data and it has been widely used [25, 26, 27]. The chemical-

specific toxicity weights are from the Risk Screening Environmental Indicators model [28]. 

Plant-level counts of EPA inspections are from the EPA’s Air Facilities System (AFS). Annual 

county-level non-attainment status for the criteria air pollutants under the Clean Air Act are from 

the EPA [29].The SIC-4 Herfindahl–Hirshman Index  is from the Census Bureau, while the 

quantity of shipment and the producer price indices are from Bureau of Economic Analysis. Our 

final dataset is comprised of an unbalanced panel of 1,523 different firms and 2,735 different 

plants for the years 1988-2001. Our sample is likely to include the larger plants within the US 

chemical sector, as plants that are in our database are those that report to D&B, which tend to be 

the larger plants. Further, plants are required to report to the TRI only if their pollution exceeds a 
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specific threshold [28].7 We link a firm to all its plants that report to the TRI and that report in 

TRI as being in the chemical manufacturing sector (SIC-28). Therefore, for a firm which 

operates in both chemical and non-chemical manufacturing sectors, the firm’s pollution and 

number of employee is that from its plants operating in SIC-28 only.  

5 Data Description 

RC participants have grown slightly from 126 firms (or 804 plants) in 1988 to 142 firms 

(or 1,199 plants) in 2001. On average RC participants are more pollution intensive (measured in 

toxicity-weighted air pollution) than non-RC participants, but the pollution-intensity for both 

cohorts declines over our sample period.  Comparison of columns 3 and 4 in Table 1 indicates 

that RC and non-RC participants differ systematically in their characteristics. On average, plants 

that belong to RC participating firms emit more pollution, measured in levels or pollution 

intensity; are larger, measured in number of employees; and tend to belong to multi-plant firms 

with larger numbers of plants. RC plants operate in more polluting sub-industries, as indicated by 

the SIC Pollution index, and in more concentrated industries, as measured by the Herfindahl-

Hirshman Index.  This comparison indicates that the two cohorts are fairly different, and 

highlights the need for our analysis to control for these systematic differences.   

6.  Regression results 

Our sample covers 18,850 observations of plant-years. Our analysis spans the years 1990-

2001, as each year of observations requires two lagged years. Our dependent variable is air 

                                                 
7 Plants operating in SIC-28 are required to report to the TRI if they: (1) had 10 or more full-time employees 
or the equivalent; and (3) “manufactured” or “processed” more than 25,000 pounds or “otherwise used” more 
than 10,000 pounds of any listed chemical during a calendar year. 
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pollution intensity, measured as the ratio of toxicity-weighted air pollution at a plant to the 

number of employees at that plant. We report robust standard errors clustered on firms.8 

6.1  OLS 

 Regressing toxicity-weighted air pollution intensity on RC participation status (RC-

status) using OLS, we find that RC participation is associated with larger pollution intensity 

(Table 2, columns 1-4). These results hold for the full sample and the subset of plants owned by 

multi-plant firms. We recover C-statistic values between 3 and 8, which are statistically 

significant, confirming that RC participation is endogenous, and thus calling for the IV or GMM 

estimator.9 Because the Pagan-Hall test statistic indicates that the errors are heteroskedastic, we 

apply the GMM estimator that is more efficient than the simple IV estimator [30].10 

 6.2 Main regression results 

 In the participation regression, we regress the RC participation dummy on the 

instruments and other covariates. The coefficients for the variables that serve as instruments in 

the GMM estimation are reported in Table 3. The coefficients on other covariates are available 

on request. Table 4 and Table 5 show the results of the GMM estimation, which uses the 

instrumental variables to control for self-selection in estimating the impact of RC-status on 

pollution intensity.  

The first column in Table 3 – Table 5 shows our main specification for our full sample, in 

which we use three instruments. The fifth column in Table 3 – Table 5 shows our main 

specification for the subset of plants owned by multi-plant firms, in which we use additional 
                                                 
8 Our results clustering on industry-year interactions are qualitatively similar. 
9 We also test for the endogeneity of lagged pollution in the participation equation. The C-statistic for lagged 
pollution is also significant at the 1% level, thus motivating its treatment as endogenous. 
10 The Pagan and Hall test (1983) is robust to the presence of heteroskedasticity in other areas of the model, 
i.e., the participation equation.  
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instruments, i.e., the characteristics of other plants owned by the parent firm.  In Columns 2-3 

and columns 6-7, we check the robustness of our results by varying the instruments relative to 

our main specifications. For the purposes of comparison, in column 4 which uses the full sample, 

we include instruments based on characteristics of other plants owned by a given firm, even 

though these instruments are undefined for plants owned by single plant firms.11 Again, for the 

purposes of comparison, in column 8, which analyzes the subset of plants owned by multi-plant 

firms, we exclude the instruments based on the characteristics of other plants owned by a given 

firm.  

6.21 Instruments 

Results of the logit regression of the RC participation dummy on the instruments and 

other covariates are presented in Table 3. We note that a statistically (in)significant coefficient 

on any one instrument does not necessarily imply that the instrument is (in)valid. First, we 

consider the three instruments defined for both the “all-plants” and “multi-plants” samples.  The 

first two instruments, firms’ lagged RC participation and firms’ membership in ACC, show the 

expected signs and are statistically significant in all specifications. The third instrument, RC 

participation in the SIC-4 industry, show the expected signs and are statistically significant in the 

main specifications for both the “all-plants” and “multi-plants” samples.  

Second, we consider the additional instruments defined only for the “multi-plant 

samples.” All but two instruments are statistically significant in at least one specification. As 

expected, plants are more likely to participate in RC if they belong to firms with a high HAP to 

TRI ratio (column 6). However, they are less likely to participate if their parents own more plants 

                                                 
11 In order to estimate the model with this specification, single plant firms receive the value of 0 for the 
additional instruments and a value of 1 for the dummy variable indication a firm owning a single plant. 
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located in neighborhoods that are in NAAQS non-attainment for at least one of the criteria air 

pollutants (column 7).  The neighborhood pressure variables do not yield a consistent picture. In 

most specifications, firms whose plants are located in more educated neighborhoods are more 

likely to participate in RC (columns 5-6), but surprisingly, locations in poorer neighborhoods 

have the same effect (column 6). 

6.22 Validity tests for instruments 

While no tests can positively determine that an instrument is valid, we run a number of 

tests to check if they are conclusively invalid.  The first condition for valid instruments is that 

they are not correlated with the error term in the second stage. Based on the p-value of the 

Hansen-J statistics for over-identification (Table 4), we fail to reject the null that instruments are 

jointly valid.  

 The second condition for valid instruments is that they are correlated with the 

endogenous regressors. To examine their relevance, we conduct tests based on the relationship 

between the instruments and RC-status. We consider whether the instruments are “weak enough 

to imperil inference,” i.e., if the bias in coefficients from the IV estimates exceeds a specific 

percent bias in the coefficients from the OLS estimates [31]. In Table 4, we report the Stock and 

Yogo [31] compilation of critical values at which the bias in coefficients from the IV estimates 

exceeds 5% or 20% the bias in the coefficients from the OLS estimates [32].12 First, we report a 

test of under-identification. Our reported Kleibergen and Paap LM statistic exceeds the Stock 

and Yogo critical values even at the 5% relative bias; thus, we fail to reject the null that the 

instruments are correlated with the endogenous regressors. Second, we report a test of weak 

                                                 
12 Baum et al. (2007) suggest the use of this comparison even though the Stock and Yogo (2005) compilation 
is based on the assumption that the errors are independent and identically distributed (i.i.d). They note that no 
studies test weak instruments when the errors are not i.i.d. 
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instruments. Our Kleibergen and Paap Wald statistic easily exceeds the Stock and Yogo [31] 

critical values; thus we fail to reject the null that the instruments are strongly correlated with the 

endogenous regressors in any of the specifications. 

6.23  RC impact on pollution 

 The results from the GMM estimation show that plants owned by firms participating in 

RC did not reduce their pollution intensity relative to statistically equivalent plants owned by 

non-RC participating firms (Table 5). The coefficient on the RC status is positive, but not 

statistically significant at conventional levels. These results hold for the full sample of all plants 

(column 1-4) and the subset of plants owned by multi-plant firms (column 5-8), both for the 

main specifications and the specifications in which we varied the instruments.  

Our estimates indicate that we cannot rule out that the program effect is not statistically 

different from zero. Nevertheless, it is still useful to consider the magnitude of the bounds of 

these estimates. With a 95% confidence interval, we estimate that the program effect lies 

between the end-points [-0.02, 0.12]. Even taking the lower-bound estimate, i.e. the most 

favorable towards finding a reduction in pollution, we report with 95% confidence that plants 

owned by RC participants reduce their pollution by no more than 2%  relative to statistically-

equivalent plants owned by non-RC participants. In other words, even in the most favorable 

estimate towards finding a reduction, the magnitude of the reduction is still small. Interestingly, 

in the most favorable case against finding a reduction in pollution, the upper-bound estimate 

indicates that plants owned by RC participants increase their pollution by 12% relative to the non 

RC participants. Such an increase is large relative to the yearly 6% reduction of pollution among 

all plants in our sample between 1988 and 2001.  
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Comparing the results from the OLS (Table 2 columns 2 and 4) and GMM (Table 5 

columns 1 and 5) regressions, we find that the coefficients from OLS (βOLS=  0.2) and GMM 

(βGMM=0.03 or 0.05) are both positive, βOLS is statistically significant, and the magnitude of βOLS 

exceeds βGMM. 13    This could be explained by firms which face more difficulties in reducing 

pollution self-selecting into RC to signal green.  Firms may use RC as a substitute for reducing 

pollution, but controlling for selection, the increase due to participation is less pronounced.   

6.25 Participation in RC 

We analyze the impact of marginal changes in covariates on the probability of 

participation in RC (Table 6). We calculate the changes in the likelihood of participation using 

coefficients estimated in the base participation regression (Tables 3) and holding the covariates 

at their mean values. The probability of participation in RC estimated at the sample means is 

13% for all plants and 54% for plants owned by multi-plant firms. 

Institutional aspects of the RC program exert a strong influence on plant’s participation. 

Based on the results from the full sample of all plants, participation in RC in the previous period 

raises the probability of participation by 90%, while plants’ ownership by a firm that was a 

member of the ACC prior to RC raises participation by 34%.14 Sub-industry specific factors also 

influence RC participation. Switching a plant from a sub-industry with mean participation in RC 

to a sub-industry one standard deviation above the mean, increases the plant’s likelihood of 

participation by 20%. 

                                                 
13 In an alternative specification that includes plant fixed effects and excludes lagged pollution, βGMM = 0.11 
and still statistically insignificant and βOLS =0.13. We use the Arellano-Bond estimator for a specification that 
includes both plant fixed effects and lagged pollution, using the first stage predicted RC probability to correct 
for the endogeneity. The coefficient on RC remains statistically insignificant. 
14 For a plant at the sample mean, being in RC the previous period increases the probability of participation by 
90% from 1.7% to 91%. For a plant at the sample mean, being in ACC in 1988 and 1989 the previous period 
increase the probability of participation by 34% from 7% to 40%. Figures are rounded. 
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Firm size exerts a sizeable influence on plant participation. A one standard deviation 

increase in the number of plants owned by the firm raises RC participation by 20%. Ownership 

by a firm whose logged mean number of employees per plant is one standard deviation more 

than the average raises participation by 7%. “Environmental justice” concerns have been voiced 

suggesting that plants in poorer or less educated neighborhoods may be less likely to join self-

regulatory programs due to lack of public pressure. However, we find that neighborhood 

characteristics exert only a weak influence on participation and their effects appear 

contradictory. In the full sample, plants in poorer neighborhoods are more likely to participate 

(+2%), while among multi-plant firms, those firms whose plants are located in less educated 

neighborhoods are less likely to participate (-6%). 

6.31 Robustness checks:  RC effects over time 

 To check whether the impact of RC has changed over its existence, we specify models 

which allow the program effects to vary over time. In these specifications which omit the RC 

participation dummy, the coefficient on the interaction variable between the RC participation 

dummy and the year(s) dummy provides a comparison of the pollution intensity from RC 

participants and non-RC participants for the given time period. As seen in Table 7, in the 

specification with blocks of years, RC participants increased their pollution intensity by about 7-

9% relative to statistically equivalent non-RC participants. It is noteworthy that we do not find 

statistically significant negative effects in any of the time periods.  

6.32  Other robustness checks  

Our dependent variable on pollution intensity is the ratio of toxicity-weighted air 

pollution to the number of employees. This specification could lead to misleading conclusions if 

plants respond to RC by choosing a production process that is less labor intensive, but that does 
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not raise pollution per unit of production.  Should larger plants increase their output at a faster 

rate than labor, our denominator for large plants may be too small, resulting in too large a 

measure of pollution intensity. Given that RC participants typically have larger plants, this mis-

measurement of pollution intensity could bias our estimates of the impact of RC. To address this 

concern, we use two alternative dependent variables: the toxicity-weighted level of pollution and 

pollution divided by the squared number of employees. Results using these alternative dependent 

variables, available from authors, provide no evidence that RC reduced pollution.15 

6.33 Heterogeneous program effects   

We test Dawson and Segerson’s [10] hypothesis that sub-groups of plants have incentives 

reduce their pollution intensity, even if other plants free-ride. Our results in Table 8, however, 

indicate that program effects do not vary significantly based on most plant or firm 

characteristics, including measures of plant or firm size. Environmental justice concerns that RC 

firms whose plants are located in poor neighborhoods would be less inclined to reduce pollution 

are not supported by our results (column 4). Nevertheless, we do find that the effect of RC on 

pollution intensity is decreasing with the lagged pollution of plants (columns 5-7). Cleaner plants 

are more likely to engage in a greater degree of green-washing, i.e., participating in the RC 

program that signals green but failing to reduce their pollution intensity. In contrast, additional 

pressure from participation or shared best practices in the program may cause the dirtier plants 

that participate in RC to partially reduce their pollution intensity. Next we apply Equation 4 to 

estimate the impact of RC on plants’ pollution intensity, and use the Delta Method to estimate 
                                                 
15 Results for other specification checks are also available on request. We restrict our analyses to three different 
samples of plants: continuous reporters for pollution, continuous reporters for counts of employees, and plants 
whose owners’ RC status changes. We examine both pounds and toxicity-weighted pollution released into 
various media: water, land, offsite and all media. We include the inspection variable to ensure our estimated 
coefficient on the RC participation dummy does not erroneously capture regulatory effects. In no case did we 
find that participation leads to a statistically significant reduction in pollution intensity. 
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the standard errors of these estimates. At a 90% confidence level, we estimate RC significantly 

increased pollution intensity for 7,178 plant-year observations, of which 2,459 belong to RC 

participants.   We estimate that RC reduced pollution intensity in 5,845 plant-years out of 

18,850, but the effect was only significant for 373 observations, of which 77 were RC 

participants.  These figures indicate that RC significantly reduced pollution intensity for 

approximately 1% of participating plants.   

As a point of reference, we consider a counterfactual in which the 884 plants that did not 

participate in RC in 1999, decided to join the program and adjusted their performance in the 

same manner as we estimated the actual participants did.  In this case, we estimate with 90% 

confidence that 377 would have increased their pollution intensity under the program, while only 

17 would have decreased their pollution intensity.16   While we find that RC only led to 

decreased pollution intensity for an extremely small number of the plants, these results suggest 

that there may be offsetting forces at work. Participation in a “program that signals green” may 

be a substitute for improving performance leading to increased pollution intensity. Shared best 

practices, on the other hand, may help the dirtiest plants to reduce their pollution intensity. We 

cannot separately identify these effects, though our results indicate that if both are at work, the 

substitution effect is much greater.       

7.  Conclusion 

We conclude that participation in RC does not reduce a plant’s pollution intensity. In 

most specifications, we find that plants owned by RC participating firms do not reduce their 

pollution intensity relative to statistically equivalent plants owned by non-RC participating firms. 

                                                 
16 There may be additional equilibrium effects from adding plants to the program, as the collective benefits 
may be reduced by the addition of firms which are likely to be free-riders.  These additional free-riding firms 
would reduce the incentive for any of the participants to improve performance. 
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In a few specifications, we even find that RC participants increase their toxicity-weighted air 

pollution intensity by 7-9% relative to statistically equivalent non-RC participants. This increase 

is sizable when compared to the yearly decline of 6% for the average toxicity-weighted air 

pollution intensity of all plants in our sample between 1990 and 2001. Based on our estimates, 

the switch from non-participation to participation in RC would roughly wipe out at least one year 

of this trend.   

There are three caveats to our results. First, our study would understate RC’s impact on 

reducing pollution intensity if non-participants reduced their pollution intensity in response to 

RC [33, 34]. For example, RC could have prompted innovations in pollution abatement 

technology and this technological spillover could have reduced the pollution abatement costs and 

thus the pollution intensity for all plants. Nevertheless, the likelihood that these spillover effects 

would be larger among RC members that share best practices mitigates this concern. Second, we 

examine only one of RC’s codes i.e. Pollution Prevention, and leave the evaluation of other 

codes to future work.  Because RC was created in response to Bhopal, plant managers may have 

prioritized RC’s codes, such as Process Safety [3], that are more closely related to the prevention 

of industrial accidents. Third, we examine the RC regime prior to their requirement of third party 

verification of plants’ conformance with the RC14000 technical standards [4].  

Our results that RC failed to reduce pollution intensity are consistent with the findings 

that voluntary programs to reduce greenhouse gas pollution have failed to reduce utilities’ carbon 

intensity and plants’ pollution [18, 35].  Furthermore, our results from several specifications that 

RC participants increase their pollution intensity relative to statistically equivalent non-

participants are consistent with results from the 33-50 program in the US chemical and metal 

industries [27] and from the ISO 14001 program in Quebec’s pulp and paper industry [36]. Our 
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study is not designed to uncover why RC led to these paradoxical results, but our results are 

consistent with regulators potentially reducing their scrutiny of participants in voluntary 

programs [14, 37] or with firms offsetting their behavior that signal green, i.e., joining RC, with 

negative behavior i.e., raising pollution intensity [38]. From a policy perspective, we conclude 

that it would be premature to rely fully on self-regulation programs which mirror RC before 

2002, i.e. without third party verification or enforceable penalties for non-performance, as a tool 

to reduce pollution. Future work should test the role of third party certification, required in the 

RC program in 2002, on the effectiveness of self-regulation in reducing pollution.  
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Table 1: Summary statistics: Means for various subsets of plants
[1] [2] [3] [4] [5] [6]

        All Plants     Plants owned by
 RC     Non-RC Multi-plant Single-plant

Mean Std. Dev. Participants Participants Firms Firms
RC participation dummy 0.37 0.48 1 0 ** 0.53 0.04 **
ACC Membership in 1988 and 1989 0.36 0.47 0.89 0.05 ** 0.52 0.05 **
Number of employees 162 416 264 102 ** 204 76 **
Number of plants owned by firm 8.9 11.5 16.7 4.3 ** 12.7 1.0 **
Single-plant firm dummy 0.33 0.47 0.03 0.50 ** 0 1 **
Toxicity weighted air pollution 3x107 6x108 7x107 1x107 ** 5x107 8x106 **
Toxicity weighted air pollution/employees 4x105 4x106 6x105 2x105 ** 5x105 2x105 **
Toxicity-weighted HAP/TRI 0.85 0.30 0.86 0.85 * 0.84 0.87 **
Plant's neighborhood's characteristics
     % white 0.76 0.29 0.77 0.75 ** 0.763 0.756 **
     % low education 0.33 0.17 0.33 0.33  0.326 0.330 *
     % poor 0.16 0.15 0.16 0.16  0.16 0.15 *
     % urban 0.74 0.39 0.68 0.78 ** 0.72 0.78 **
   County Non-attainment dummy 0.64 0.48 0.61 0.66 ** 0.62 0.69 **
SIC Index 4.62 26.64 7.44 2.96 ** 5.51 2.77 **
  Value of Shipment Index 95 12 93 95 ** 95 94  
  Producer Price Index 92 9 93 92 * 93 91 **
  Herfindahl-Hirschman Index 675 540 730 643 ** 712 599 **
Notes: Means significantly different at the 5% ** and 10% level *  
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Table 2: OLS regression of pollution-intensity on RC participation dummy and other covariates
[1] [2] [3] [4]

All plants Plants owned by multi-plant firms
Exclude Include Exclude Include

Full set of Full set of Full set of Full set of
Covariates Covariates Covariates Covariates

RC participation dummy 0.13 ** 0.24 ** 0.12 ** 0.22 **
 (0.02) (0.06) (0.02) (0.07)
Full set of covariates excl incl excl incl
Year dummies incl incl incl incl
SIC dummies excl incl excl incl
Observations 18,850 18,850 12,705 12,705
R-squared 0.8 0.8 0.8 0.8
Test-statistics
Pagan-Hall general test statistic  109 ** 251 ** 95 ** 196 **
C statistic (orthogonality of RC participation) 6 ** 8 ** 3 * 6 **
C statistic (orthogonality of lagged pollution)  113 ** 120 ** 61 ** 68 **
Notes: Statistically significant at the 5% ** and 10% level *
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Table 3: Logit regression of RC-participation dummy on covariates 
[1] [2] [3] [4] [5] [6] [7] [8]

 All plants        Only Plants Owned by Multi-Plant Firms
 Main spec Subset of instruments Main spec  Subset of instruments
ACC membership in 1988 2.5 ** 4.2 ** 2.5 ** 2.4 ** 4.2 ** 2.5 ** 2.5 **
   and 1989 dummy (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)
RC participation dummy 6.5 ** 7.6 ** 6.5 ** 6.4 ** 6.4 ** 6.4 **
       dummy (t-1) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)
SIC-4 % RC 6.7 ** 3.0 -2.1 6.7 ** 6.8 ** -1.6 6.8 ** 6.9 **

(2.2) (2.1) (1.3) (2.2) (2.2) (1.4) (2.2) (2.2)

Firm's HAP/TRI 0.1 9 x 10-6  0.6 ** 0.01
(0.2) (0.2) (0.1) (0.2)

Firm's SIC pollution index 0.001 -2 x 10-4 -0.002 5 x 10-4

(0.003) (0.003) (0.002) (0.003)
Firms' plants' average neighborhood pressure
     % white -0.1 -0.1 0.2 0.01

(0.5) (0.5) (0.3) (0.5)
     % low education -1.4 * -1.4 * -1.4 **

(0.8) (0.8) (0.5)
     % poverty 0.7 0.4 2.0 ** -0.6

(1.1) (1.1) (0.6) (0.9)
     % urban -0.5 * -0.4 -0.9 **

(0.3) (0.3) (0.2)
    Non-attainment county -0.3 -0.3 -0.1 -0.5 **
              dummy (0.2) (0.2) (0.1) (0.2)
Notes: Only results for covariates that serve as instruments in the GMM regression are shown above. Results for other
covariates are available upon request. Statistically significant at the 5% ** and 10 % * level 
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Table 4:  GMM regression of pollution-intensity on RC participation dummy  and other covariates & test-statistics
[1] [2] [3] [4] [5] [6] [7] [8]

 All plants        Only Plants Owned by Multi-Plant Firms
Main spec        Subset of instruments Main spec              Subset of instruments

RC-status 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.02
(i.e. impact of RC on pollution) (0.03) (0.03) (0.04) (0.03) (0.03) (0.05) (0.03) (0.04)
Test - statistics
Under-ID: Kleibergen-Paap 192 179 120 194 135 92 135 134
  LM rk statistics
Weak-ID: Kleibergen-Paap 2025 1812 62 761 726 21 871 1903
   Wald rk statistics 
Stock-Yogo Critical Values
          5% Relative Bias 11 13 13 19 19 19 18 11
          20% Relative Bias 6 6 6 6 6 6 6 6
Hansen J statistic 0.1 0.03 0.04 7 7 7 6 0.04
p-value for Hansen J stat 1 0.9 0.9 0.6 0.6 0.5 0.6 1

Emissions equation: R-squared 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Observations 18,850 18,850 18,850 18,850 12,705 12,705 12,705 12,705
Notes: Statistically significant at the 5% ** and 10 % * level 
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Table 5:  GMM regression of pollution-intensity on RC participation dummy and other covariates
[1] [2] [3] [4] [5] [6] [7] [8]

 All plants        Only Plants Owned by Multi-Plant Firms
Main spec                Subset of instruments Main spec                Subset of instruments

RC-status 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.02
 (0.03) (0.03) (0.04) (0.03) (0.03) (0.05) (0.03) (0.04)
Plant's pollution 0.9 ** 0.9 ** 0.9 ** 0.9 ** 0.9 ** 0.9 ** 0.9 ** 0.9 **
  (t-1) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005)
Plant's HAP/TRI -0.01 -0.01 -0.01 -0.01 0.03 0.03 0.03 0.02

(0.04) (0.04) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05)
Plant's SIC 0.0002 0.0002 0.0002 0.0003 0.0006 0.0006 0.0006 0.0003
  pollution index (0.0005) (0.0005) (0.0005) (0.0005) (0.0004) (0.0004) (0.0004) (0.0004)
No firm-owned -0.003 ** -0.003 ** -0.003 ** -0.003 ** -0.003 ** -0.003 ** -0.003 ** -0.003 **
  plants (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Log (firm's no. 0.005 0.005 0.005 0.006 0.008 0.008 0.008 0.006
  employees) (0.009) (0.009) (0.009) (0.008) (0.009) (0.009) (0.009) (0.009)
Log (plant's no. 0.02 ** 0.02 ** 0.02 ** 0.02 ** 0.03 ** 0.03 ** 0.03 ** 0.03 **
 employees t-1) (0.008) (0.008) (0.008) (0.007) (0.008) (0.008) (0.008) (0.008)
Single Plant 0.02 0.02 0.02 0.02
  dummy (0.037) (0.037) (0.037) (0.036)
Notes: Statistically significant at the 5% ** and 10 % * level 
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Table 5 (continued):  GMM regression of pollution-intensity on RC participation dummy and other covariates
[1] [2] [3] [4] [5] [6] [7] [8]

 All plants        Only Plants Owned by Multi-Plant Firms
Main spec               Subset of instruments Main spec              Subset of instruments

Plant's neighborhood characteristics
  % white 0.05 0.05 0.05 0.05 0.01 0.01 0.02 0.01

(0.04) (0.04) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05)
 % low 0.04 0.04 0.04 0.04 -0.06 -0.06 -0.06 -0.07
   education (0.06) (0.06) (0.06) (0.06) (0.08) (0.08) (0.08) (0.08)
 % poverty 0.1 ** 0.1 ** 0.1 ** 0.1 ** 0.2 ** 0.2 ** 0.2 ** 0.2 *

(0.07) (0.07) (0.07) (0.07) (0.10) (0.10) (0.10) (0.10)
 % urban -0.07 ** -0.07 ** -0.07 ** -0.07 ** -0.07 ** -0.07 ** -0.07 ** -0.06 **

(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)
  Non-attainment -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02
  county dummy (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Shipment 0.0003 0.0003 0.0003 0.0001 -0.0006 -0.0006 -0.0006 -0.0003
 quantity index (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Producer -0.004 * -0.004 * -0.004 * -0.004 * -0.003 -0.003 -0.002 -0.003
 Price Index (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Herfindahl -6 x 10-5 -6 x 10-5 -6 x 10-5 -8 x 10-5 -4 x 10-5 -4 x 10-5 -3 x 10-5 -9 x 10-7

  index (-7x10-5) (-7x10-5) (-7x10-5) (-7x10-5) (-9x10-5) (-9x10-5) (-9x10-5) (-9x10-5)
SiC dummies incl incl incl incl incl incl incl incl
Year dummies incl incl incl incl incl incl incl incl
Observations 18,850 18,850 18,850 18,850 12,705 12,705 12,705 12,705
Notes: Statistically significant at the 5% ** and 10 % * level 
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Table 6: Impacts on the probability of participation in RC from marginal increases in covariates 

Variable d(Pr RC) Std. Variable Variable ΔPr(RC) d(Pr RC) Std. Variable Variable ΔPr(RC)
 dx  Err. Mean  Std. due to dx  Err. Mean Std. due to

Dev. 1 Std Dev Dev. 1 Std Dev
Increase Increase

†ACC membership in 1988 & 1989 0.4 ** 0.02 0.4 0.5 0.5 ** 0.02 0.5 0.5
†RC participation dummy (t-1) 0.9 ** 0.009 0.3 0.5 0.9 ** 0.006 0.5 0.5
SIC-4 % RC 0.8 ** 0.2 0.3 0.2 0.2 ** 1.7 ** 0.5 0.3 0.2 0.3 **
Firm's HAP/TRI -0.02 0.05 0.7 0.5 -0.01
Firm's SIC pollution index 0.0004 0.001 4.9 15.3 -0.01
Firms' plants' average neighborhood pressure
     % white 0.02 0.1 0.8 0.4 0.004
     % low education -0.4 ** 0.2 0.3 0.2 -0.06 **
     % poverty 0.06 0.2 0.2 0.1 0.01
     % urban -0.1 ** 0.06 0.7 0.4 -0.04 **
     Non-attainment county dummy -0.08 0.05 0.6 0.4 -0.03
Plant's pollution (t-1) 0.003 0.002 8.2 3.3 0.01 0.004 0.005 8.6 3.3 0.01
Plant's HAP/TRI (t-1) 0.02 0.02 0.9 0.3 0.01 0.08 * 0.05 0.8 0.3 0.02 *
Plant's SIC pollution index 0.0005 ** 0.0002 4.5 27 0.01 ** 0.0009 * 0.0005 5.4 27 0.02 *
†Single-plant firm dummy -0.04 * 0.02 0.3 0.5   
No. of firm-owned plants 0.01 ** 0.001 9 12 0.2 ** 0.02 ** 0.002 13 12 0.2 **
Log (firm's mean employees) 0.02 ** 0.01 2.9 2.4 0.07 ** 0.08 ** 0.01 4.3 2.4 0.2 **
Log (plant's mean employees (t-1)) 0.02 ** 0.01 4.1 1.3 0.02 ** 0.03 ** 0.01 4.3 1.3 0.04 **
Notes: The probability of RC participation with values of covariates set at the sample mean is 0.13 for all plants and 0.54 for plants owned 
by multi-plant firms. † Impact on participation a discrete change from 0 to 1. Statistically significant at the 5% level ** and 10% level *
Results are reported for only a subset of covariates

All Plants Only Plants Owned by Multi-plant Firms
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Table 7:   GMM regression of pollution-intensity on RC participation dummy
                interacted with a dummy for multiple years

[1] [2] [3]
Main spec.  6 year blocks  3 year blocks
RC 0.05 RC x 0.07 * RC x 0.09 *

(0.03)   I(yr<='95) (0.04)   I(yr='90-92) (0.05)
RC x 0.05 RC x 0.05
  I(yr>'95) (0.04)   I(yr='93-95) (0.05)

RC x 0.02
  I(yr='96-98) (0.04)
RC x 0.09 *
  I(yr='99-01) (0.05)

Notes: The RC dummy  is omitted in columns 2-3. Thus, the coefficient on
"RC x years dummy" provides a comparison of the pollution-intensity from RC 
participants and statistically equivalent non-RC participants within a time period.
Statistically significant at the 5% ** and 10% * level, respectively.
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Table 8: GMM regression of pollution-intensity on RC participation - Heterogenous program effects
[1] [2] [3] [4] [5] [6] [7]

RC 0.04 0.04 0.05 0.05 0.04 0.02 0.04
(0.05) (0.04) (0.03) (0.03) (0.04) (0.05) (0.03)

RC x -0.02 ** -0.02 ** -0.02 **
  pollution (t-1) (0.01) (0.01) (0.01)
RC x -0.0007 -0.002
  no plants (0.003) (0.003)
RC x dummy for 0.2 0.2 0.2
  single-plant Firm (0.1) (0.1) -0.1
RC x firm's # -0.001
  employees (t-1) (0.02)
RC x plant's # 0.02
  employees (t-1) (0.02)
RC x plant's # -0.004
 years in RC (0.008)
RC x firm's # 0.0004
 years in RC (0.008)
RC x  % poor in plant's 0.1
  neighborhood (0.1)
RC x  % urban in plant's -0.03
  neighborhood (0.04)
Notes: Statistically significant at the 5% ** and 10% * level, respectively.


