COMMERCIAL STREET BRIDGE REPLACEMENT

Replacement of the I-376 Commercial Street Bridge over Nine Mile Run, Frick Park,

and Commercial Street City of Pittsburgh, Allegheny County

PITT IRISE

2025 TRANSPORTATION FORUM

NICK PALMIERI – PENNDOT DISTRICT 11-0 DAVE MATELAN – JB FAY / S&B USA NICK BURDETTE - HDR

PRESENTERS

Nick Palmieri PennDOT District 11 Sr. Civil Engineer Supervisor Nick Burdette, PE HDR Sr. Bridge Engineer Dave Matelan Fay, S&B USA Project Manager

PRESENTATION OUTLINE

- 1. Project Site & Existing Bridge
- 2. Design
 - a. Bridge Replacement Alternatives
 - b. Design Details
 - c. Accelerated Replacement
- 3. Construction
 - a. Progress to date
 - b. Plans to completion

REPLACEMENT OF I-376 COMMERCIAL STREET BRIDGE

REPLACEMENT OF I-376 COMMERCIAL STREET BRIDGE

EXISTING BRIDGE OVERVIEW

Completed in 1951, the Commercial Street Bridge is 73 years old.

The structure carries approximately 100,000 vehicles per day.

The bridge cannot carry Permit Loads on Interstate 376.

Accelerating deterioration/Recurring maintenance not cost-effective.

DESIGN

REPLACEMENT CONSIDERATIONS & NEW BRIDGE

REPLACING EXISTING BRIDGES

Staged Construction

Slide-In Construction

ALTERNATIVES ANALYSIS

- Start with Six Options
- Slide-In Construction method selected:
 - Reduce traffic impacts
 - Less construction near traffic
 - Limit approach work and permanent impacts
- Provide Arched Appearance
 - Replacement of Historic Arch Bridge through Section 106 process

ALTERNATIVES ANALYSIS

ARCHED DELTA FRAME

ARCHED DELTA FRAME

PROPOSED BRIDGE: SECTION

- 7 lines of steel, composite plate girders
- Girders with 78" deep webs, 10" composite deck
- 2 lanes each direction (EB & WB)

PROPOSED BRIDGE: FOUNDATIONS

- · Cantilever abutments founded on micro piles
- Short wall piers on micro piles
- Bottom 'knuckle' supports on HLMR disc bearings

FEA MODEL

- LARSA 4D
- Staged construction analysis
- Dead, temperature, wind and live loads
- Shell and beam member types
- Elastic spring supports

NOT TO SCALE

Abutment Support Stiff Springs (Transverse Only For Guided Bearings) Legs & Bracing Webs: Shell Elements Flanges: Beam Elements (Same as Girders) **Pier Supports** Stiff Springs (All Directions for Fixed Bearings)

& BRG ABUT 2

MODEL DETAILS

- Webs: two shells deep
- Rigid links connect top flange to deck
- Dummy members between deck nodes (displacement control prior to activating deck)

DELTA FRAMES

- Curvature approximated with ~6ft line segments
- Legs and diaphragms modeled with shells (web) and beams (flanges)
- Vierendeel truss behavior between diaphragms (moment connections)

KNUCKLES

- Knuckle defined between adjacent field splices
- Thicker web (~1 ³⁄₄") and 70ksi steel for webs and flanges
- Bottom knuckle region idealized into series of rigid links
- Initial capacity checks performed using global model during girder design
- Top knuckle global design used similar approach

KNUCKLES

Bottom Knuckle

- LUSAS model used for local analysis of top and bottom knuckles
- Thick beam and thick shell elements used with 1.5in meshing
- Directly modeled stiffeners for stability and assess weld capacity
- Rigid links defined at flanges/webs for load application
- Spring supports (bearings) with diaphragm boundary condition

KNUCKLES

Bottom Knuckle - Results

- Leg and diaphragm Strength and Fatigue loads applied to model
- Von Mises Stress (SE) plots compared against Fy for Strength
 - AASTHO fatigue thresholds compared for Fatigue
- Shear stress (Sxy) plots compared against 0.58Fy for Strength
- Minor localized stress yielding observed near bearing edges
- Model stresses compared against local buckling capacity

Shear Stresses (Sxy)

CONSTRUCTION ANIMATION

NEW BRIDGE

······

.....

CONSTRUCTION

TEMPORARY CONSTRUCTION EASEMENTS

RAMP G RECONSTRUCT

- SR 8012 Ramp G (I-376 WB Off Ramp Wilkinsburg) o~1500LF
- 36 Consecutive Full Day Closure

 Incentive 26 days full
 Disincentive Greater Than 36 Day
- Goal

Reconstruct and Lower Ramp 3'
 For Future Detour Route

DRAINAGE/E&S

PAVEMENT REMOVAL

UNDERCUTS

SR 8012 RAMP G COMPLETE

• July 22 – Aug 18, 2024 (26 Days)

FALL 2024

- Clear Site, E&S
- Utility Relocation
- Relocate Commercial St. and Trail

FALL/WINTER

• 24" and 48" Sewer Line Relocation • Pier 1 & 2 Location

FALL/WINTER

Temporary SOE Abutment 1 & 2

MICROPILES

CURRENT SITE OVERVIEW

ANTICIPATED SCHEDULE

- Construction of Substructure of new Bridge
- One overnight lane closure of I-376
 WB for ITS work
- Thirty-Five Weeknight Extended Single Lane Restrictions on I-376 EB for construction of retaining wall
- Weekend long closure of I-376 EB & WB for installation of sign structures and ITS
- Median Reconstruction East of Tunnel (Long Term Lane Shift)
- Nine overnight full closures of I-376 EB for Bridge Steel Delivery
- Erection of Bridge Steel

ANTICIPATED SCHEDULE

- Construction of New Superstructure
- Ten Weekend long single lane closures for construction of shoulder widening I-376 EB
- Weekend long single lane closure of I-376 WB for shoulder reconstruction
- FULL CLOSURE of I-376 EB & WB for bridge demolition and slide
- Reconstruct Commercial Street

ANTICIPATED SCHEDULE

- Establish Final Grading
- **Re-establish stream** ٠
- Install post-construction stormwater • management structures
- Plant trees and grass ٠
- Current Contract Completion June 2027

FOLLOW PENNDOT

www.PennDOT.pa.gov

www.DMV.pa.gov

PennsylvaniaDepartmentofTransportation

47

PennDOTNews

PennsylvaniaDOT

PennDOTSec

PennDOTSec

in /cor

/company/PennDOT

PennsylvaniaDOT

Questions?

