

University of Pittsburgh

Prediction of Dowel Corrosion and Effect on Performance of Concrete Pavements - IMPLEMENTATION

PITT IRISE

IRISE Annual Meeting May 22nd, 2025

Julie M. Vandenbossche, PhD, PE Charles Donnelly Gabriela Salach Megan Darnell Alessandro Fascetti, PhD

Difference in elevation between the approach and leave slabs

Account for the following in faulting prediction models

- 1. Load damage (Decouple doweled and undoweled jts in calibration)
- 2. Non-standard dowel designs
- 3. Corrosion

Load damage

Nonstandard dowels

- 1. Guidance on long-life dowel selection (corrosion)
- 2. Use of dowel equivalence for non-standard dowel designs (load damage)
- 3. Corrosion and dowel damage faulting prediction model

Dowel load damage model

Nonstandard dowels

Dowel corrosion model

- 1. Guidance on long-life dowel selection (corrosion)
- 2. Use of dowel equivalence for non-standard dowel designs (load damage)
- 3. Corrosion and dowel damage faulting prediction model

Load damage

Nonstandard dowels

Simulated joint opening/closing

Average maximum force for joint opening/closing

Dowel diameter and coating

Average maximum shear stress for joint opening/closing

Coating

Simulated joint opening/closing: FRP? & Zinc clad

Average maximum force for joint opening/closing

Dowel diameter and coating

Average maximum shear stress for joint opening/closing

Coating

Simulated joint opening/closing

Zinc-clad dowel (C4Z)

Zinc clad vs zinc galvanized

Degradation Process: depassivation -> galvanized layer is dissolved -> surrounding zinc is depleted

-> corrosion of the steel.

Zinc galvanized

• Dowel protected by epoxy coating then thin zinc galvanized layer

Zinc clad

- More pure zinc to react (35 mils vs 0.8 mils) = more zinc oxide produced
- Corrosion resistant but increased potential for spalling and joint lock-up

Results worth implementing? .. If so, steps needed?

Results:

• Zinc Clad?.... FRP?

- 1. Guidance on long-life dowel selection (corrosion)
- 2. Use of dowel equivalence for non-standard dowel designs (load damage)
- 3. Corrosion and dowel damage faulting prediction model

Nonstandard dowels

Results worth implementing?.. If so, steps needed?

- 1. Guidance on long-life dowel selection (corrosion)
- 2. Use of dowel equivalence for non-standard dowel designs (load damage)
- 3. Corrosion and load damage faulting prediction model

Nonstandard dowels

Steel vs galvanized dowels

Corrosion rates (in²/wk):

Purple vs Green steel:

C2G approx. = **C2P**

Purple vs Green galvanized:

C2G is 2.5x faster than G1P

<u>Steel vs galvanized</u>

Green: C2G & C2P is 3x faster than G1G Purple: C2G & C2P is 7x faster than G1P

 Galvanized layer reduces probability of corrosion development with double barrier system

Galvanized (G1P)

Carbon steel (C2P)

Purple vs green epoxy

- Pliable green epoxy coating tended to bunch up and peel during the joint opening/closing simulation
- Area of corrosion on the G1G dowels is 2.4x greater than G1P dowels

ENGINEERING

University of Pittsburgh Department of Civil and Environmental Engineering

C2G3

Load damage

$$DE_{Beam} = \alpha_1 * \log(x+1) + \alpha_2 * \log(x+1) * \frac{\log(Load)}{\beta} + \alpha_3 * \frac{\log(x+1)}{\beta}$$

x = number of load cycles, Load = applied load (lb), $\beta = \sqrt[4]{\frac{K*d}{4*E_{dowel}*I}},$ $K = \frac{E_{PCC}}{h_{PCC}}$ = modulus of dowel-concrete reaction (psi) E_{PCC} = concrete elastic modulus (psi), h_{PCC} = PCC thickness (in) d = dowel diameter (in), E_{Dowel} = dowel elastic modulus (psi), *I* = moment of inertia (in⁴), C_8 = calibration coefficient $\alpha_1 = 592.8, \alpha_2 = 353.3, \alpha_3 = -1256.5,$

Corrosion and load damage model

$$DOWDAM = \begin{cases} C_{Corr} * \sum [\alpha_1 * \log(x_i + 1) + \alpha_2 * \log(x_i + 1) * \frac{\log(Load_i)}{\beta} + \alpha_3 * \frac{\log(x_i + 1)}{\beta}] & \text{if } Load_i \ge 900 \\ C_{Corr} * \sum \frac{Load_i}{900} * [\alpha_1 * \log(x_i + 1) + \alpha_2 * \log(x_i + 1) * \frac{\log(900)}{\beta} + \alpha_3 * \frac{\log(x_i + 1)}{\beta}] & \text{if } Load_i < 900 \end{cases}$$

$$C_{Corr} = C_8 * t^{C_{EXP} * C_{Coating}}$$

$$C_{Coating} = \alpha * (\pi * d) * jw$$

Freezing index (°F day)	C _{EXP}
< 100	0
100 - 400	0.15
400 - 600	0.2
600 - 1000	0.25
> 1000	0.25

Dowel coating and material type	α
Epoxy-coated steel	0.15 (20 yrs;1x))
Green galvanized	0.075 (40 yrs; 3x)
Purple galvanized	0.01 (50 yrs; 7x)
Non-corrodible bars	
(FRP & stainless	0 (never)
steel)	

University of Pittsburgh Department of Civil and Environmental Engineering

ENGINEERING

PITT

Questions?

