

University of Pittsburgh

PITT IRISE

IRISE Annual Meeting May 22nd, 2025

Julie M. Vandenbossche, PhD, PE Charles Donnelly Gabriela Salach Megan Darnell Alessandro Fascetti, PhD

Panel Members

- Matt Blough, Pennsylvania Turnpike
- Chuck Niederriter, Golden Triangle
- Dave Sciullo, Golden Triangle
- Lydia Peddicord, PennDOT
- Jason Molinero, Allegheny County
- Yathi Yatheepan, FHWA

Difference in elevation between the approach and leave slabs

Source: pavementinteractive.org

Marcus, Henri. "Load carrying capacity of dowels at transverse pavement joints." ACI Journal Proceedings. Vol. 48. No. 10. 1951.

Bearing stresses damage concrete around dowel

Corrosion causes decreases dowel diameter at joint

Objectives

Account for the following in faulting prediction models

- 1. Load damage (Decouple doweled and undoweled jts in calibration)
- 2. Incorporate non-standard dowel designs
- 3. Corrosion for both standard epoxy coated steel and long-life dowels

Dowel load damage model

Nonstandard dowels

Dowel corrosion model

Research approach

Research approach

Bearing stresses damage concrete around dowel

Laboratory setup

- A load head
- B joint
- C bearings
- D sensors
- E clamp
- F simulated base
 - k = 200 psi/in

Experimental design

$$B = \frac{E * I}{d}$$

B = dowel stiffnessE = dowel elastic modulusI = dowel moment of inertia

d = dowel diameter

		Dowel Diameter (in)					
		Low stiffness (7.5 – 1.4x10⁵ lb∙in)		Medium stiffness (2.8 – 3.2x10 ⁶ lb∙in)		High stiffness (4.1 – 5.0 x10 ⁶ lb∙in)	
Beam thickness (in)	Load	1	1.25	1.25	1.375	1.625	1.5
6	Low						
	Medium	EC	FRP	EC			
	High						
8	Low			EC			
	Medium	EC		EC	ET		
	High			EC			
10	Low						
	Medium			EC		ET	EC
	High			EC			EC

$$DE_{Beam} = \alpha_1 * \log(x+1) + \alpha_2 * \log(x+1) * \frac{\log(Load)}{\beta} + \alpha_3 * \frac{\log(x+1)}{\beta}$$

x = number of load cycles, Load = applied load (lb), $\beta = \sqrt[4]{\frac{K*d}{4*E_{dowel}*I}},$ $K = \frac{E_{PCC}}{h_{PCC}}$ = modulus of dowel-concrete reaction (psi) E_{PCC} = concrete elastic modulus (psi), h_{PCC} = PCC thickness (in) d = dowel diameter (in), E_{Dowel} = dowel elastic modulus (psi), *I* = moment of inertia (in⁴), C_8 = calibration coefficient α_1 = 592.8, α_2 = 353.3, α_3 = -1256.5,

Research approach

Corrosion causes decreases dowel diameter at joint

Experimental design

Three replicates per dowel, 21 total specimens

Dowel ID	Core material	Coating material	Approx. coating thickness (mil)	Dowel diameter (in)
C2G	Solid carbon steel	A775 (green) epoxy coating	20	1.25
C2P	Solid carbon steel	A934 (purple) epoxy coating	20	1.25
G1G	Tubular carbon steel with hot-dip zinc galvanized coating	A775 (green) epoxy coating	10	1.34
G1P	Tubular carbon steel with hot-dip zinc galvanized coating	A934 (purple) epoxy coating	10	1.34
C4Z	Tubular carbon steel	Mechanically bonded zinc cladding	40	1.70
SN	Tubular type 316L stainless steel	No coating	-	1.90
FN	Solid fiber-reinforced polymer (FRP)	No coating	-	1.25

Corrosion setup

Corrosion program

Simulated joint opening/closing

Objective: Mobilize dowel Evaluate potential for seizing

Simulated joint opening/closing

Average maximum force for joint opening/closing

Dowel diameter and coating

Average maximum shear stress for joint opening/closing

Coating

Simulated joint opening/closing: FRP? & Zinc clad

Average maximum force for joint opening/closing

Dowel diameter and coating

Average maximum shear stress for joint opening/closing

Coating

Simulated joint opening/closing

Zinc-clad dowel (C4Z)

Visualized corrosion progression

Quantum Max FaroArm[®]

Visualized corrosion progression

Carbon steel with green epoxy coating dowel (C2G)

Carbon steel with purple epoxy coating dowel (C2P)

Corrosion area

Progressive increase in surface area that corroded was estimated using ImageJ

Steel vs galvanized dowels

Corrosion rates (in²/wk):

Purple vs Green steel:

C2G approx. = *C2P*

Purple vs Green galvanized:

C2G is 2.5x faster than G1P

<u>Steel vs galvanized</u>

Green: C2G & C2P is 3x faster than G1G Purple: C2G & C2P is 7x faster than G1P

 Galvanized layer reduces probability of corrosion development with double barrier system

Galvanized (G1P)

Carbon steel (C2P)

Purple vs green epoxy

- Pliable green epoxy coating tended to bunch up and peel during the joint opening/closing simulation
- Area of corrosion on the G1G dowels is 2.4x greater than G1P dowels

ENGINEERING

University of Pittsburgh Department of Civil and Environmental Engineering

C2G3

Zinc clad vs zinc galvanized

Degradation Process: depassivation -> galvanized layer is dissolved -> surrounding zinc is depleted -> corrosion of the steel.

Zinc galvanized

- Dowel protected by epoxy coating then thin zinc galvanized layer
- Zinc clad
- More pure zinc to react (35 mils vs 0.8 mils) = more zinc oxide produced
- Corrosion resistant but increased potential for spalling and joint lock-up

Zinc Clad
PITT PAVEMENT
ENGINEERING

Research approach

Faulting model framework

$$FMAX_{0} = (C_{1} + C_{2} * FR^{0.25}) * \delta_{curl} * \left[Log(1 + C_{5} * 5^{EROD}) * Log\left(\frac{P_{200} * WetDays}{p_{s}}\right) \right]^{C_{6}}$$

$$FMAX_{i} = FMAX_{i-1} + C_{7} * DE_{i} * [Log(1 + C_{5} * 5^{EROD})]^{C_{6}}$$

$$\Delta Fault_{i} = (C_{3} + C_{4} * FR^{0.25}) * (FMAX_{i-1} - Fault_{i-1})^{2} * DE_{i}$$

$$Fault_{i} = Fault_{i-1} + \Delta Fault_{i}$$

 $FMAX_0$ = Initial maximum mean transverse joint faulting (in.),

FR = Base freezing index defined at the percentage of the time that the top of the base is below freezing,

 δ_{curl} = Maximum mean monthly PCC upward slab corner deflection due to temperature curling and moisture warping,

EROD = Base/subbase erodibility index (Integer between 1 and 5),

 P_{200} = Percent of the subgrade soil passing No. 200 sieve,

WetDays = Average number of annual wet days (> 0.1 in. of rainfall),

 p_s = overburden on subgrade (psi),

 $FMAX_i$ = Maximum mean transverse joint faulting for month i (in.),

 $FMAX_{i-1}$ = Maximum mean transverse joint faulting for month i-1 (in.) (If i = 1, $FMAX_{i-1} = FMAX_0$),

 DE_i = Differential energy density of subgrade accumulated during month i,

 $\Delta Fault_i$ = Incremental monthly change in mean transverse joint faulting during month i (in.),

FR = Base freezing index defined at the percentage of the time that the top of the base is below freezing (<32 °F),

 $Fault_{i-1}$ = Mean joint faulting at the beginning of month i (in.) (0 if i = 1),

 $C_1 \dots C_7 = Calibration coefficients.$

Dowel damage model

$$J_d = J_d^* + (J_0 - J_d^*) \exp(-DAM_{dowels})$$

$$\Delta DOWDAM = C_8 * \frac{J_d * (\delta_L - \delta_{UL}) * DowelSpace}{d f_c^*}$$

 J_d = nondimensional dowel stiffness

- J_{d}^{*} = critical nondimensional dowel stiffness
- J_0 = initial nondimensional dowel stiffness

 DAM_{dowels} = damage from past loading at the doweled joints

 $\Delta DOWDAM$ = incremental change in dowel damage for current month

- δ_L = deflection of the loaded slab, in
- δ_{UL} = deflection of the unloaded slab, in
- C_8 = Calibration constant

DowelSpace = Dowel spacing, in

 f_{c}^{*} = Concrete compressive strength

Proposed damage model

$$DOWDAM = \begin{cases} C_{Corr} * \sum [\alpha_1 * \log(x_i + 1) + \alpha_2 * \log(x_i + 1) * \frac{\log(Load_i)}{\beta} + \alpha_3 * \frac{\log(x_i + 1)}{\beta}] & \text{if } Load_i \ge 900 \\ C_{Corr} * \sum \frac{Load_i}{900} * [\alpha_1 * \log(x_i + 1) + \alpha_2 * \log(x_i + 1) * \frac{\log(900)}{\beta} + \alpha_3 * \frac{\log(x_i + 1)}{\beta}] & \text{if } Load_i < 900 \end{cases}$$

$$C_{Corr} = C_8 * t^{C_{EXP} * C_{Coating}}$$

$$C_{Coating} = \alpha * (\pi * d) * jw$$

Freezing index (°F day)	C _{EXP}
< 100	0
100 - 400	0.15
400 - 600	0.2
600 - 1000	0.25
> 1000	0.25

Dowel coating and material type	α		
Epoxy-coated steel	0.15 (20 yrs;1x))		
Green galvanized	0.075 (40 yrs; 3x)		
Purple galvanized	0.01 (50 yrs; 7x)		
Non-corrodible bars			
(FRP & stainless	0 (never)		
steel)			

DOWDAM sensitivity

Conclusions

- Abrasion and impact resistance testing **All passed**
 - Majority of dowels pass performance requirements
- Corrosion not correlated to dowel mobilization force for epoxy coated and stainless
 - Application of bond breaker is imperative
 - Zinc clad oxidizes -> increasing pushout force
- Epoxy galvanized steel developed less corrosion than epoxy carbon steel
- Epoxy coating effective in preventing corrosion if coating is undamaged
- Green epoxy more susceptible to peeling on carbon steel bars
- Improved faulting model developed
 - Supplement to PavementME Design procedure
 - Corrosion and vehicular loading damage accounted for (calibrated separate from undoweled pavements)
 - App developed to assist with implementation

IRISE

Thank you!

Questions?

