

#### **IRISE: Joint Design Optimization**

**PITT** IRISE

March 5, 2025

Julie M. Vandenbossche PhD. PE Megan Darnell Zachary Brody Charles Donnelly



- Matt Blough, Pennsylvania Turnpike
- Chuck Niederriter, Golden Triangle
- Charles Buchanan, Pennsylvania Turnpike
- Lydia Peddicord, PennDOT
- Jason Molinero, Allegheny County
- Yathi Yatheepan, FHWA



### Slab design philosophy

- Slab thickness => prevent fatigue cracking
- Slab length (joint spacing) => long as possible to decrease costs associated with construction/maintenance without developing mid-slab cracking or hindering the performance of the joint.



### Slab design philosophy

- **Slab thickness** => prevent fatigue cracking (rarely occurs)
- Slab length (joint spacing) => long as possible to decrease costs associated with construction/maintenance without developing mid-slab cracking or hindering the performance of the joint.

#### hindering the performance of the joint

Longer slab => larger joint opening

- Lower agg interlock load transfer
- More difficult to keep sealed



### Joint performance – Concrete durability

- Durable concrete mixture PEM
- Concrete < 85% saturated (Taylor et al. in 2012)
  - Avoid ponding in the joint
    - Well-sealed joint
    - Activated joints
    - Drainable base



Reduced potential for PCC distress



Increased potential for PCC distress



### Joint performance - Design

• Effective load transfer

(Faulting, corner breaks)

Drainable base

(Erosion, pumping)

- Joint sealing
  - prevent entry of deicing salts

(Dowel corrosion – faulting, PCC durability)

• prevent entry of water

(Pumping, erosion, dowel corrosion, PCC durability)

• prevent incompressibles (small pebbles and sand) (Spalling, blowups)





Reduced potential for pumping & erosion



6

### Task B: Field performance data

- Blowups no performance data
- Spalling
  - 94% of PennDOT sections with fewer than 10 years in service display less than 10% joints spalled.
  - Of the 6% of sections with early spalling, most significant factors are construction year and joint sealant type (Type II vs IV).
  - 78% of Turnpike sections had 100% joints spalled but attributed to reflective tape installation and not sealant performance
- Faulting
  - Limited faulting in both PennDOT and Turnpike datasets threshold for observable faulting (0.25 in).

Thanks to Ed Skorpinski (PTC) and Lydia Peddicord (PennDOT)





#### Transverse Jt. sealant performance



#### Transverse Jt. sealant performance

#### Installation

- Wipe test (is this sufficient?)
- Vacuum saw slurry ?

Sealant performance Reservoir design





#### Reservoir design

10 PITT





#### Task C: Transverse Jt. sealant performance

- Installation Sealant performance **Reservoir design**
- Single cut (fill)
- Reservoir • AASHTO 93 Guide
  - 1. Allowable strain =  $\Delta L / W$ Cohessive failure
  - 2. Shape factor = D/WAdhesive failure





#### Task C: Transverse Jt. sealant performance

- Installation Sealant performance Reservoir design
- AASHTO 93 Guide
  - 1. Allowable strain =  $\Delta L$ / W
  - 2. Shape factor = D/W





#### Allowable strain and Shape factor = f ( sealant type)



#### Task C: Predicted reservoir design width

 $\Delta L_{design(Old)} = CL(\Delta T\alpha + \varepsilon_{DS})$  $\Delta L_{design(New)} = L(C_{Therm}\Delta T\alpha + C_{D.S.}\varepsilon_{DS})$  Smart Pavement Data

Where,

- L = 15 ft
- C<sub>therm</sub> = 1 (Field value)
- $\Delta T = 85^{\circ}F 20^{\circ}F = 65^{\circ}F$
- $\alpha = 5.71/^{\circ}F$  (Lab value)
- C<sub>D.S.</sub> = 0.20 (Field value)
- ε<sub>DS</sub> = 630 με (Lab value)
- C = 0.65 (Old value)

Therefore,

- $\Delta L_{design} = 0.084$  in
- $\Delta L_{design} = 0.114$  in



University of Pittsburgh Department of Civil and Environmental Engineering

13 **PIT** 

### Field measured joint widths

| Project | Pavemen<br>t<br>Construc<br>tion Year | Type of<br>Sealant | Age of<br>Pavemen<br>t (Years) | Age of<br>Sealant<br>(Years) | Ave. Jt.<br>Width<br>(in) | Max. Jt.<br>Width<br>(in) | Min. Jt.<br>Width<br>(in) | Max. Jt.<br>Opening<br>(in) | Min. Jt.<br>Opening<br>(in) |
|---------|---------------------------------------|--------------------|--------------------------------|------------------------------|---------------------------|---------------------------|---------------------------|-----------------------------|-----------------------------|
| A02N    | 2003                                  | Type IV            | 18                             | 2                            | 0.50                      | 0.63                      | 0.43                      | 0.25                        | 0.06                        |
| A02S    | 2006                                  | Type IV            | 15                             | 2                            | 0.42                      | 0.51                      | 0.35                      | 0.14                        | -0.02                       |
| A05     | 2015                                  | Type II            | 6                              | 4                            | 0.38                      | 0.55                      | 0.28                      | 0.18                        | -0.10                       |
| A08A    | 2002                                  | Type II            | 20                             | 1                            | 0.59                      | 0.71                      | 0.47                      | 0.33                        | 0.10                        |
| A10     | 2014                                  | Silicone           | 8                              | 8                            | 0.54                      | 0.59                      | 0.43                      | 0.21                        | 0.06                        |
| A12A    | 2016                                  | Type II            | 5                              | 5                            | 0.50                      | 0.51                      | 0.47                      | 0.14                        | 0.10                        |
| A12B    | 2018                                  | Type IV            | 3                              | 3                            | 0.48                      | 0.55                      | 0.43                      | 0.18                        | 0.06                        |

Theoretical  $\Delta L @ 20F = 0.084$  in

Thanks to Lydia Peddicord (PennDOT)

University of Pittsburgh Department of Civil and Environmental Engineering



### Sealant failure: joint widths can widen over time...



- 2. Stress builds up
- 3. Stress relaxation through creep so joint width at zeros stress increases



## Sealant failure: dominant joints



ENGINEERING

University of Pittsburgh Department of Civil and Environmental Engineering

PIT

# Sealant failure: dominant joints

PIT



#### Transverse Jt. sealant performance

#### Installation

#### **Sealant performance**

- Silicone vs Type II and Type IV (Type IV still not performing as previous?)
  - ASTM D6690: Standard Spec. for Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements
  - ASTM D5893: Standard Spec. for Cold-Applied, Single-Component, Chemically Curing Silicone Joint Sealant for Portland Cement Concrete Pavements

Reservoir design







#### Sealant materials

Sealant meets material specs/performance requirements

- Adhesion/cohesion requirements in ASTM 5329
- Closed-cell backer rod
- Fatigue exposure typically not considered



### Characterize 42 yrs of simulated performance

#### Simulated field conditions:

- Exposure:
  - Freeze-thaw cycles
- Fatigue
  - Joint opening/closing (thermal loading)
  - Vertical (vehicle loading)

#### **Condition assessment:**

- Joint permeability
- Sealant stiffness





20

- Asphalt: P&T Products Dura-Fill 3405 LM (K)
- Silicone: Sikasil 728 Non-Sag Silicone Sealant
- Asphalt filled
  - ACPA recommendation
  - Sealant W:D = 1:9.5
- Asphalt reservoir
  - Detail D Pub 72M
  - Sealant W:D = 1:2
- Silicone reservoir
  - Joint Type P Pub 72M
  - Sealant W:D = 1:1



Silicone reservoir



#### Pavement CamoSeal by Main Street Materials

- Caltrans Approved (Recently)
- Joint Type P Pub. 72M
- Sealant W:D = 1:1







#### Pavement CamoSeal by Main Street Materials

- Poor performance in preliminary testing
- Joint opening/closing: immediate adhesive & cohesive failure
- Vehicle loading: immediate cohesive failure



Manufacturer suggested different blend better suited for colder climates



#### Pavement CamoSeal by Main Street Materials

- Poor performance in preli
- Joint opening/closing: i adhesive & cohesive f
- Vehicle loading: imme failure

Manufacturer suggest blend better suited for c climates





### **Specimen fabrication**

- Cast 3-in x 4-in x 6-in concrete specimens
- Plane the surface
- Saw the reservoir
- Seal the joint

25 **PIT1** 

- Asphalt sealed in field
- Silicone sealed in lab



Specimens sealed in field



Asphalt reservoir



Asphalt filled



Silicone reservoir



#### Condition Evaluation: joint permeability

#### **Permeability Apparatus**









#### Findings: sealant stiffness



#### Fatigue – Vehicle loading

- Cycle +/- 10 mils
- 42 years (30,000 cycles @ 5 Hz)
- Haversine wave

PIT

• Test temp. = 20°F



**Vehicle loads** 





### Fatigue – Joint Opening/Closing

#### Initial protocol:

- Cycle between +53 and +78 mils (SR-22 TC data: ave. daily low -1 std dev ~ ave. daily high +1 std. dev.)
- 5,100 cycles (~42 yrs)

# No damage accumulation under typical conditions

#### **Revised protocol:**

 Cycle between +53 and +186 mils (PennDOT joint sealant survey)

#### Joint opening Nov. – Feb. months





- Haversine wave @ 1 Hz
- Test temp. = 20°F



### Findings

- Vehicle loading does not cause significant sealant damage
- Typ. jt. openings (0.04 to 0.07 in) sufficiently large to fail asphalt filled joint
  - Narrow joint width causing poor seal quality and greater cohesive stress
- Reduction in performance lower for silicone reservoir design than asphalt designs
  - Silicone material is stiffer but more pliable as compared to the asphalt material
- Both asphalt reservoir and silicone reservoir should meet performance needs with proper installation

Note: Loss in performance from oxidation not considered







### Acknowledgements

- IRISE Consortium members
- Edward Skorpinski (PA Turnpike Commission)
- James Young and Brandon Farrel (Gulisek)
- Lydia Peddicord (PennDOT)
- Tom Bryan (Bryan Concrete) and Justin Bryan (Neville Aggregates)
- Jack Parkhurst (University of Pittsburgh)



#### Acknowledgements



### Thank you!



### **Questions?**







American Concrete Pavement Association, "Concrete Pavement Joint Sealing/Filling," ACPA, 2018.

Tanyildizi, M. "Joints in rigid pavements," Advanced Engineering Days, 2022.

