Photogrammetry and Neural Networks to Detect Form Changing Slope Conditions

Christoph Mertz

Carnegie Mellon University

Application: Landslide detection

2018: Record year of landslides in our region

- Record rainfall: wettest year
- Soil: red clay
- Many hills
- Not enough \$\$\$

Route 30

Greenleaf St. / West End

What is Deep Learning?

Example: Find the function that marks each pixel with the probability that it is "road"

~1 million elements
~10 million parameters ~ 1 million elements

Advantage: Only need to show it enough examples!
Disadvantage: Need to show it >10,000, sometimes millions of examples

State of the Art computer vision / machine learning

Object classification and localization

State of the Art computer vision / machine learning

Panoptic segmentation

State of the Art computer vision / machine learning

Keypoint detection

Indicator events in images

Debris on road

Cracks: longitudinal, then curving

Persistently wet =>reduced friction

Leaking pipe => Earth movement might cause leak.

3D reconstruction from images (Photogrammetry)

From 80 images:

Indicator events in 3D

Retaining wall: bulges, tilting, bowing, undermining

Tree

Rail guard

Current focus: development of cracks

Example: Spring Run Road

November 11, 2018

March 12, 2019

May 20, 2019

3D model of Spring Run Road landslide

Cross section

top view
side view (cross section)

Work with Civil Engineering: Modeling of failing slope

Get lots of data with Transit bus

Applications:

Monitor and assess infrastructure and traffic

Damage detection - e.g. landslides

Traffic counts - parked and moving cars

Detect relevant changes and events
Send only relevant information, given bandwidth, time, and privacy constraints

Bus with cameras, GPS, storage, communication and computing

