

Lessons Learned from U.S. Government Support of Clean Coal Technologies

Thomas A. Sarkus Division Director, PFTD Division

September 18, 2013

National Energy Technology Laboratory

Where Energy Challenges Converge & Energy Solutions Emerge

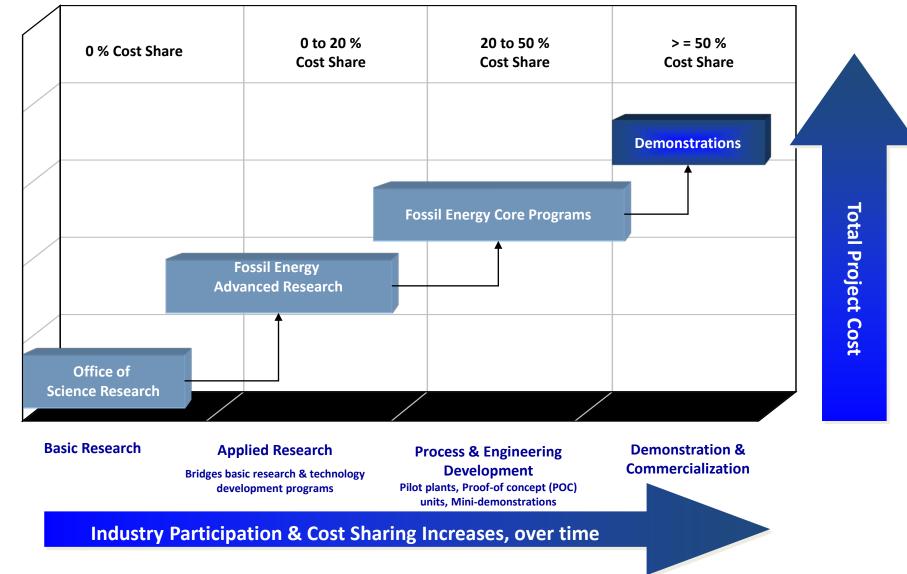
MISSION

Advancing energy options to fuel our economy, strengthen our security, & improve our environment

Albany, Oregon

Morgantown, West Virginia

Pittsburgh, Pennsylvania


Teach oneself by exploring the old and deducing the new

Cost Share Ensures Commercial Relevance

Return on Investment from Fossil Energy RD&D

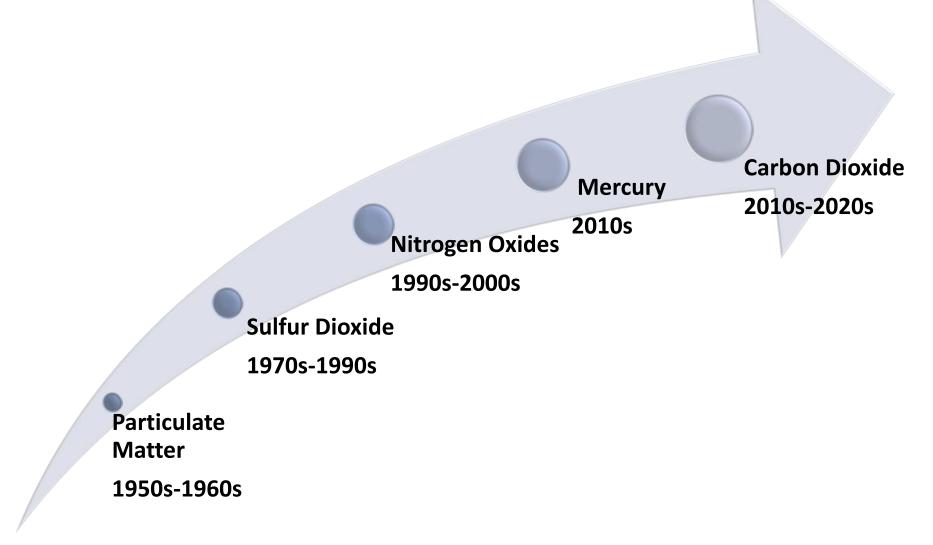
FE RESEARCH — THE RETURN ON INVESTMENT

\$111 billion in benefits ¹ \$13 return for every \$1 invested ³	avoided SO ₂ ,	1.2 million jobs created ¹ Thousands of researchers trained	12-fold increase in shale gas production ²	10-fold increase in EOR using CO ₂ injection ³	50–70% cost reduction in mercury control at coal-fired power plants ⁴
2000–2020	2000–2020	2000–2020	2000–2011	1985–2010	2000–2008
Clean Coal program	Clean Coal program	Clean Coal program	Natural Gas & Petroleum Technologies program	Natural Gas & Petroleum Technologies program	Mercury Control program

¹Bezdek, R. (2010). Costs and Benefits of DOE Investments in Clean Coal Technology: Implications for CCS. Presented at the Washington Coal Club, Washington, D.C., retrieved from www.washingtoncoalclub.org/docs/20100720_Bezdek.ppt. ²Newell, R. (2011). Shale Gas and the Outlook for US Natural Gas Markets and Global Gas Resources. ³Koottungal, L. (2010). 2010 Worldwide EOR Survey. Oil & Gas Journal, 108(14), 41–53. ⁴http://www.netl.doe.gov/technologies/coalpower/ewr/mercury/pubs/NETLHgR_Darticlefuelprocessingnov09.pdf.

Comparison of Coal-Based Power Generation Platform Technologies

- Pulverized Coal (PC) Boilers
 - Commercialized in 1920s-1930s
 - Approximately 5000 units operating world-wide; 1100 in US
 - Unit sizes up to ~ 1300 MWe
- Fluidized Bed Combustion (FBC) Boilers
 - Commercialized in 1970s-1980s
 - Approximately 500 units operating world-wide; 150 in US (most small)
 - Unit sizes up to ~ 600 MWe
- Integrated Gasification Combined-Cycle Power Plants
 - Commercialized in 1980s-1990s
 - 9 coal-based units operating world-wide; 4 in US
 - Unit sizes up to ~ 300 MWe


Some Demonstration Program Successes

- Advanced SO₂ Scrubbers (or Flue Gas Desulfurization, FGD)
 Pure Air (Bailly), CT-121 (Yates) & S-H-U (Milliken/Cayuga)
- NO_x Control Technologies
 - SCR, SNCR, Low-NO_x burners (consider UBC), Reburning
- Hazardous Air Pollutants (HAPs)
 - HAPs testing on 10 projects; led to R&D focus on Hg emissions
- Fluidized Bed Combustion (FBC)
 - Fuel flexibility; can handle even waste coal
- Integrated Gasification Combined-Cycle (IGCC)
 - Wabash River, Tampa/Polk & Kemper (in construction)
- Carbon Capture & Geologic Storage (currently in progress)
 - 8 active major demonstration projects currently in progress

Evolution of Air Pollution Controls

DOE Fossil Energy Demonstration Programs

Clean Coal Technology (CCT)

- 5 funding rounds, 1986-93
- 211 proposals → 60 selected → 50 agreements awarded → 33 projects completed
- \$3.26B; 40% DOE/60% Industry

Power Plant Improvement Initiative (PPII)

- 1 funding round, 2001
- 24 proposals → 8 selected → 5 agreements awarded →4 projects completed
- \$68M; 43% DOE/57% Industry

Clean Coal Power Initiative(CCPI)

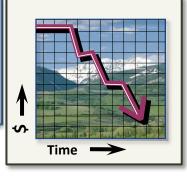
- 3 funding rounds, 2002-09
- 98 proposals → 18 selected → 12 agreements awarded → 4 completed + 4 active projects
- \$8.2B ; 16% DOE/84% Industry

FutureGen 2.0

• \$1.65B; 64% DOE/36% Industry

Industrial Carbon Capture & Storage (ICCS) Area 1

- 1 funding round, 2009
- 36 proposals → 13 selected → 11 Phase 1 agreements awarded → 3 active Phase 2 projects
- \$1.08B; 64% DOE/36% Industry



Emissions Control & Efficiency Improvements

Notable CCT Program Successes

HAPS & Hg Data

- Quantified Hazardous Air Pollutant (HAPs) Levels
- Basis for Mercury (Hg) Regulations

Advanced Coal Power Systems

- First large (265 MW) Circulating Fluidized Bed Combustion (CFBC) power plant
- Two "super-clean" Integrated Gasification Combined Cycle (IGCC) power plants

Advanced Pollution Controls

- Installed on 75% of U.S. coal plants
- 1/2 to 1/10 cost of older systems

Flue Gas Desulfurization (FGD) Scrubbers

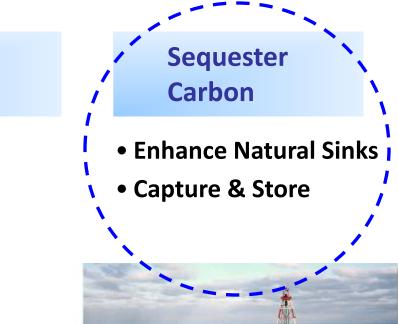
Low-NO_x Burners

Some Lessons Learned

- Technology performance often degrades, with scale-up
- Baseline technologies usually improve, over time
- Project finance, cost, schedule ≈ Technical considerations
- "Build a better mousetrap, and the world will beat a path to your door" – not necessarily true!
- Coal usage & environmental protection are not mutually exclusive

Technological Carbon Management Options *Pathways for Reducing GHGs -CO*₂

Reduce Carbon Intensity


- Renewables
- Nuclear
- Fuel Switching

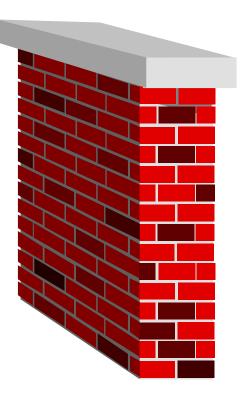
All options needed to:

- Affordably meet energy demand
- Address environmental objectives

Improve Efficiency

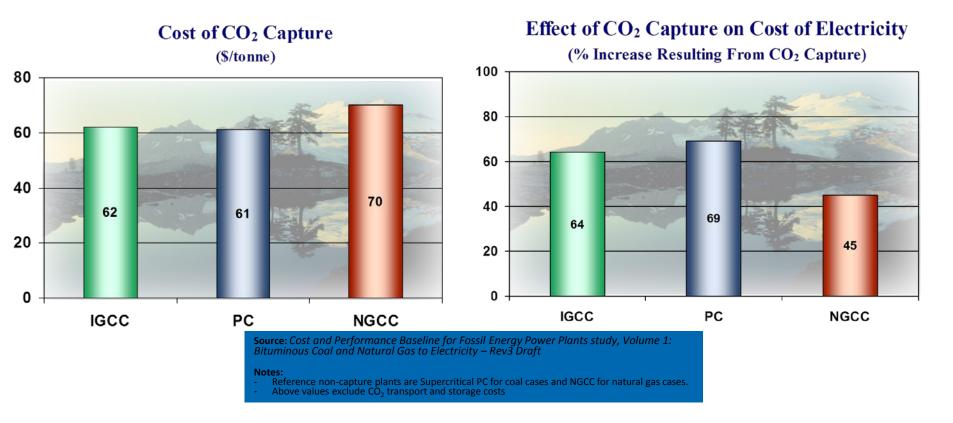
- Demand Side
- Supply Side

Key Challenges to Carbon Capture and Storage


Technical Issues

- Capture Technology
 - Existing Plants
 - New Plants
 - PCC, IGCC, Oxy-comb., Chemical looping, etc.
- Cost of CCS
- Sufficient Storage Capacity
- Permanence
- Best Practices
 - Storage Site Characterization •
 - Monitoring/Verification
 - Site Closure
 - Etc., etc.

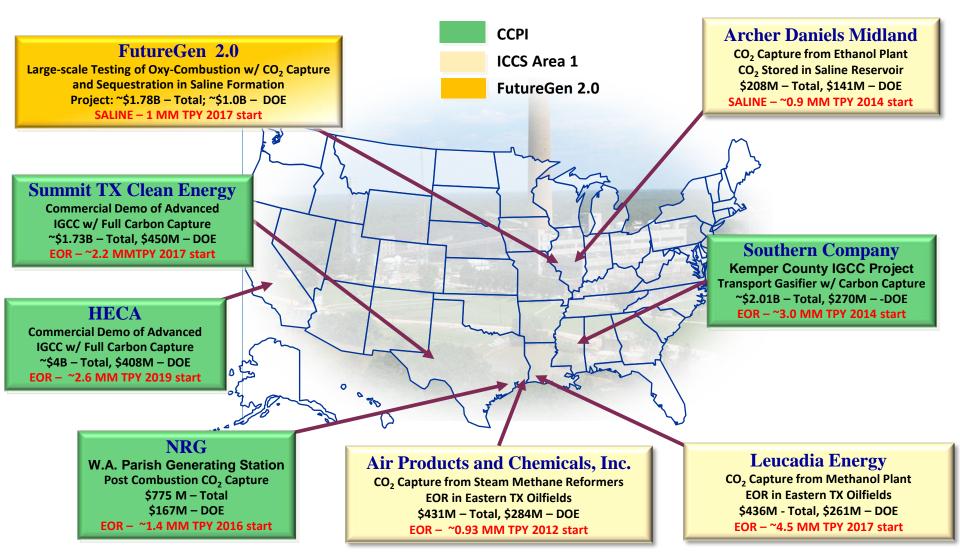
Legal/Social Issues


- Regulatory Framework
 - Permitting
 - Treatment of CO₂
- Infrastructure
- Human Capital
- Legal Framework
 - Liability
 - Ownership
 - pore space
 - CO₂
 - Public Acceptance (NIMBY \rightarrow NUMBY)

Projects helping to address both categories of issues

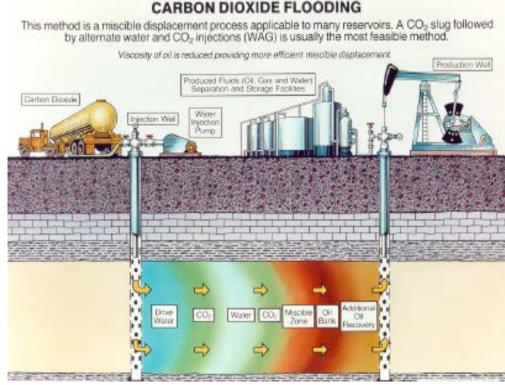
CCS Is Expensive (...but RD&D can reduce costs)

- 45–70% increase in cost of electricity
- 35–110% increase in capital cost
- 15-21% decrease in plant output per lb of coal feed



List of Active DOE/Fossil Energy Major Projects

Program/Project	Technology	CO ₂ , tpy	Cost/DOE Share	Status/Start-Up					
Clean Coal Power Initiative (CCPI) Demonstrations									
Kemper County	IGCC, 67% CO ₂ Cap.	3 million	\$2.01B/\$270M (10%)	Construction/2014					
Summit Texas	IGCC/Poly, 90%"	2.2"	\$1.73B/\$450M (26%)	Proj. Financing/2017					
H ₂ Energy California	IGCC/Poly, 90%"	2.6"	\$4B/\$408M (10%)	Proj. Financing/2019					
NRG Parish	Post-Comb., 90% "	1.4 "	\$775M/\$167M (22%)	Proj. Financing/2016					
Industrial Carbon Capture & Sequestration (ICCS) Demonstrations									
Archer Daniels Midland	EtOH, 90% CO ₂ Cap.	0.9 million	\$208M/\$141M (68%)	Construction/2014					
Air Products Port Arthur	· SMR, 90% "	0.9"	\$431M/\$284M (66%)	Operations/2013					
Leucadia Lake Charles	MeOH, 90%"	4.5 "	\$436M/\$261M (60%)	FEED/2015					
FutureGen 2.0									
Oxy-Fuel/CO ₂ Capture	Oxy-Comb., 90% Cap.	1 million	\$1.2B/\$590M (49%)	FEED/2017					
CO ₂ Pipeline & Storage	Geol. Storage (saline)		\$572M/\$459M (80%)						
<u> </u>	2 . ,		· · · ·						
Total	8 Projects	Various	\$11.4B/\$3B (26%)	Start-Ups 2013-2018					


Major CCS Demonstration Projects Project Locations & Cost Share

Enhanced Oil Recovery – Beneficial Use of CO₂

- EOR increasing its role in domestic oil production
 - EOR: 650,000 bbls/day
 → 13% of domestic production
 - CO₂-EOR: 237,000 bbls/day
 & growing
 - 90 billion barrels of light oil can yet be recovered in the U.S. using EOR
- Reduces cost of CCS
- Lowers carbon footprint of transportation sector
 - Oil produced with "next generation" CO₂-EOR may be well-better than carbon neutral
- Increases energy security

Strategic Center for Coal

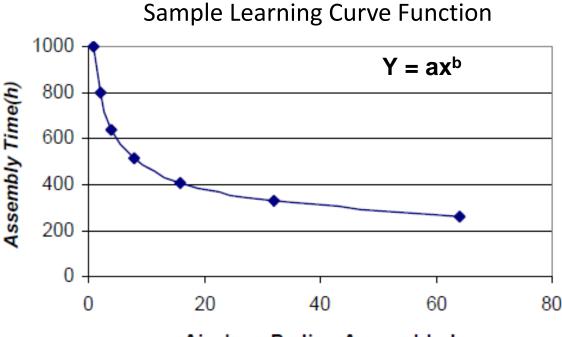
Critical R&D Challenges to Near-Zero Emissions from Coal

Near-Term Plants

Pulverized Coal Power generation Improve efficiencies Minimize criteria pollutants Minimize water usage Minimize greenhouse gases

Future Plants

Advanced Coal Power and multiple products Improve reliability Maximize efficiencies Near-zero criteria pollutants Near-zero water usage Near-zero greenhouse gases


2020 - 2050

Technology Bridge to Near-Zero Emissions

2005 - 2020

Background – Learning Curves

Airplane Bodies Assembled

- a = Cost of first unit
- x = Number of units produced
- b = Learning rate exponent
- 1 2^{-b} = Learning Rate, reduction in capital cost for doubling of capacity

- Developed by Wright in 1936 after observing labor time reductions to assemble airplanes.
- In 1998 Mackay & Probert showed that a similar rule could be applied to capital cost reductions in renewable energy.
- Models including NEMS rely on this curve to predict future capital costs.

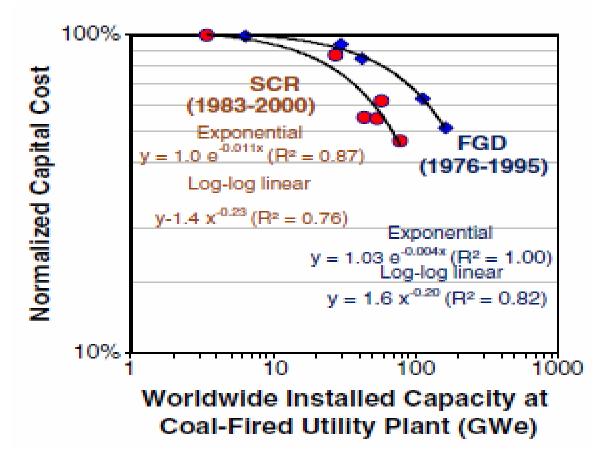
Large Variation in Learning Curves for Energy Technologies

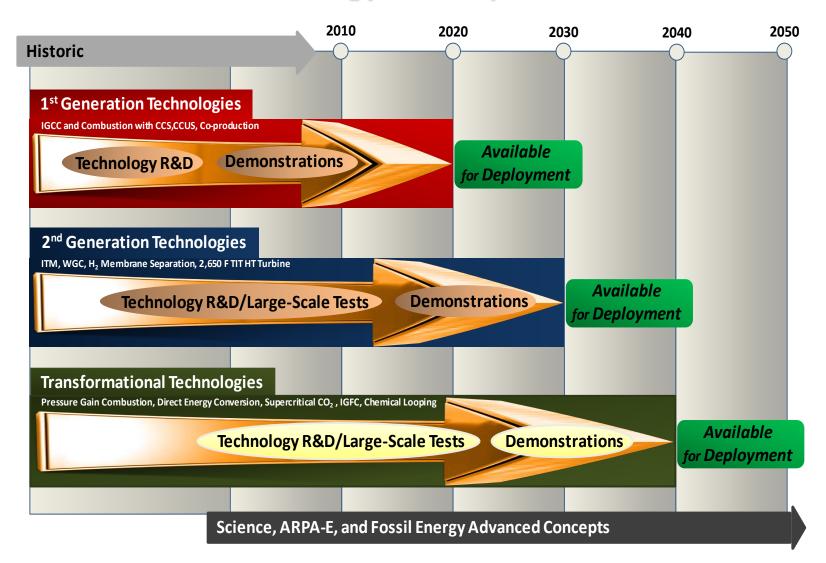
Technology	Region of Study	Time Period of Study	Estimated Learning Rate	Reference
Coal Power Plants	USA	1960 – 1980	1.0% – 6.4%	Joskow & Rose (1985)
Coal for Electric Utilities	USA	1948 – 1969	25%	Fisher (1974)
Crude Oil at the Well	USA	1869 – 1971	5%	Fisher (1974)
Solar PV Modules	World	1976 – 1992	18%	IEA (2000)
Wind Power	USA	1985 - 1994	32%	IEA (2000)
Wind Power	EU	1980 – 1995	18%	IEA (2000)

Data Source: McDonald and Schrattenholzer, 2001

Explanations for Learning Curve Variability

- Experience depreciation
- Short-term pricing behavior
- Differences in performance measures
- Definitional differences
- Varying intensities of Research & Development (R&D)
- Economies of scale
- Cost variability for factors such as land costs, wages & interest payments


Source: "Learning Rates for Energy Technologies" by Alan McDonald & Leo Schrattenholzer, Energy Policy 29, 255-261 (2000).


SO₂ & NO_x Control Learning Curves

Non-linear learning curves are prevalent in power plant emission control technologies.

Yeh, S., Rubin, E.S., Hounshell, D.A., and Taylor, M.R. (2009) Uncertainties in Technology Experience Curves, for Integrated Assessment Models, Environmental Sci. and Technol. **43** (18), 6907-14.

CCRP Technology Development Timeline

Some Next Steps for Coal-Based Power Generation Platform Technologies

Pulverized Coal Combustion

- Tightened emissions controls (e.g., HG)
- Post-combustion CO2 capture
- \uparrow Temperature, \uparrow Pressure (e.g., USC)
- Oxy-combustion

• Fluidized Bed Combustion

- Oxy-CFB combustion
- Post-combustion CO2 capture
- Pressurized CFB (possibly oxy-PFBC)

• IGCC

- $-\downarrow$ Cost, \uparrow Efficiency (e.g., larger combustion turbines)
- Higher-H₂ syngas, with water-gas shift to enable CCS
- Polygeneration of electricity, CO₂ and...fertilizers, chemicals and/or fuels
- Natural gas back-up, low-rank coals, advanced gasifier designs
- H₂ separation membranes, low cost O₂ supply, warm-gas cleanup

Some Additional Lessons Learned *incl. the 'soft side' of project management*

- Be passionate about job & career, but also be kind to the people you work with...
- Be patient and polite, yet persistent...
- Be frank and open...
- Are there really two sides to every issue?
 - Complex issues can have more than two 'sides' to consider
- Dig deep!
 - Scratch well beneath the surface, to see/understand better
- Do the math!
- Look beyond the % signs...
 - Seek to understand absolute number stats, as well as percentages
- Develop good people skills...
 - Especially, good listening skills
- Read...
 - And, strive to become a better writer in the process
- Imagine. Dream. Explore. Discover. Create.
- Make today a good one!

For More Information

Tom Sarkus 412-386-5981 thomas.sarkus@netl.doe.gov

www.netl.doe.gov

Office of Fossil Energy www.fe.doe.gov

National Energy Technology Laboratory

@NETL_News

