

Chemical Looping Technology for Fossil Energy Conversions

by

L. S. Fan Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, Ohio 43210 U.S.A.

> Pittsburgh Coal Conference October 10, 2014

Number of Publications with "Chemical Looping" in the Titles on Google Scholars

Year

Chemical Looping Systems with CO₂ Generation or Separation

"1st International Conference on Chemical Looping", Lyon, France, March 17-19 (2010). "1st Meeting of High Temperature Solids Looping Cycle Network", Oviedo, Spain, September 15-17 (2009).

Chemical Looping Systems with Non-CO₂ Generation

CO₂ Capture from Fossil Energy – Technological Solutions

Source: José D. Figueroa, National Energy Technology Laboratory (NETL), USDOE

Exergy Analysis on Hydrogen Production

Comparison of OSU SYNGAS and Coal Direct Chemical Looping (CDCL) Processes with Traditional Coal to Hydrogen/Electricity Processes

Assumptions used are similar to those adopted by the USDOE baseline studies.

Economics of Chemical Looping Process

- Retrofit to conventional coal combustion process
- CDCL replaces existing PC boiler
 - Additional equipment for CO₂ compression and transportation required
- Techno-Economic analysis performed comparing CDCL to Base Plant with no CO₂ capture and 90% CO₂ capture via post-combustion MEA process

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010, priority date 2003)

The CDCL process can be also used for high efficient hydrogen production

Cyclic Redox of Pure Fe₂O₃ with Hydrogen

Cyclic Redox of Composite Fe₂O₃ with Hydrogen

Oxygen Carrier Particle Development

Ellingham Diagram: Selection of Primary Metal

Zones of Metal Oxides for Chemical Looping

Recent research focus on Complex Metal Oxides

Zone A: They can work as oxygen carriers for both CLFO and CLPO. (NiO, CuO, CoO, Fe_2O_3 , and Fe_3O_4 , etc.)

Zone B: They are able to work as oxygen carriers for CLPO but not for CLFO (CeO₂, FeO, etc.)

Zone C: They cannot be used as oxygen carriers and are considered as inert materials. $(Cr_2O_3 \text{ and } SiO_2, \text{ etc.})$

Transition Zone: They are considered as possible CLPO materials with a significant amount of H_2O generated. (SnO₂, etc.)

Complex Metal Oxide Materials

Perovskite Type

- 1. Perovskite materials have been considered as promising oxygen carrier materials for both CLFO and CLPO.
- 2. Perovskite structures are selected in light of their oxygen nonstoichiometry and fast oxygen diffusion features.
- 3. Partial substitutions of atoms in B sites were found to result in improved catalytic effects.
- 4. Examples:
 - CaMnO_{3-δ}: can release oxygen at high temperatures; has a high mechanical strength; high melting point;

low cost (can be synthesized from CaO and MnO_x). Not stable over long term (decompose to $CaMn_2O_4$ and $Ca_2MnO_{4-\delta}$) in reduced environment

Structures of Iron Oxide

FeO

 Fe_3O_4

NaCl Type

- oxygen close-packed cubic pattern
- iron occupy all octahedral interstices

inverse Spinel Type

octahedral interstices

1/2 occupation rate

tetrahedral interstices

1/8 occupation rate

Core-Shell Particle Formation through Cyclic Gas-Solid Reactions

 $4Fe_{(s)} + 3O_{2(g)} \rightarrow 2Fe_{2}O_{3(s)} \qquad (1)$ $Fe_{2}O_{3(s)} + 3H_{2(g)} \rightarrow 2Fe_{(s)} + 3H_{2}O_{(g)} \qquad (2)$ If the cyclic reactions proceed through Fe cation diffusion, core-shell structure forms, e.g. Fe2O3 + Al2O3.

If the cyclic reactions proceed through O anion diffusion, core-shell structure does not forms, e.g. Fe2O3 + TiO2.

*Al2O3 is only a physical support, while TiO2 alters the solid-phase ionic diffusion mechanism

Fe2O3+Al2O3 VS Fe2O3+TiO2

Single Metal: Iron Microparticles

Oxidation: consumption of oxygen vacancies

 $\frac{1}{2}O_2 + V_0^{"} = O_0^X + 2h$

- Higher outward Fe diffusion coefficient
- Volume expansion of Fe oxidation
- Vacancy condensation at dislocations

In = Initial particle Ox = oxidized particle

Single Metal: Iron System

Reduction: Creation of oxygen vacancies

$$0_0^{\rm X} = \frac{1}{2}0_2 + V_0^{\rm H} + 2e$$

High temperature: sintering effect

Solid reduction conversion with methane effect of pressure

Role of Support – Oxidation of Fe and Fe/TiO₂ DFT Calculation

Oxygen anion transfer in Wüstite and Ilemnite

Energy barrier for O²⁻ can be reduced after support addition

Modes of CFB Chemical Looping Reactor Systems

Mode 2 - reducer: gas-solid (OC) countercurrent dense phase/moving bed flows

fuel reaction products

uel/reducing

Moving Bed Reducer

CO₂, H₂O

Fuel

Chalmers University CLC System

OSU CLC System

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010) (priority date:2003).

Chemical Looping Reactor Design

Particle Type	Ν	Ji	Cu				
	Lab	CFB 120	Lab		< 3,		1/ NOUR d -H ₂
Type of Data 4000 - 1000)0 kg/s (or 14.00	0 – 36	.000 ton	/hour	300W	25 kW 2
Particle Type	MgAl ₂ O ₄	MgAl ₂ O ₄	Al ₂ O ₃	CuO/Al ₂ O ₃	MgAl ₂ O ₄	Fe ₂ O ₃ / Al ₂ O ₃	Composite Fe_2O_3
Air Flow Rate @1000 MWth and 10% Excess (mol/s)	11784						1309
Volumetric Air Flow Rate at 1 atm and 900 °C (m ³ /s)	1134					126	
Particle Circulation Rate @ 1000 MWth (kg/s)	4000	10000	3000	6000	8000	10000	800
Reducer Solids Inventory (tonne)	230	160	70	total	500	1200	
Oxidizer Solids Inventory (tonne)	390	80	390	2100	n/a	350	1500 100
Medium Particle Size (µm)	153	120	300	200	153	151	2000
Particle Density (g/cm ³)	1.9	5	2.5	2.5	4.1	2.15	2.5
Ut (m/s)	2	0.8	2	1.2	1.1	0.6	11
Uc (m/s)	4	4.8	4.9	4.2	4.8	3.6	4
Use (m/s)	6	6.7	7.5	6.1	6.9	4.9	9.7
Typical Riser Superficial Gas Velocity (m/s)	7.00					12	
Bed Area Turbulent Section (if Required) at 1 atm (m ²)	231.47					25.18	
Bed Area Required for Riser Section at 1 atm (m ²)	162.03					10.49	
Corresponding Riser Diameter (m)	14.37					3.66	
Solids Flux at 1 atm (kg/m ² s)	24.69	61.72	18.52	37.03	49.37	61.72	76.23
Number of Beds Needed given 8 m ID Riser	3.23					<1	
Number of Beds Needed given 1.5 m ID Riser	91.73					5.94	
Ug for a Single 1.5 m ID Riser at 1 atm (m/s)	642.14					71.29	
Ug for a Single 8 m ID riser at 1 atm (m/s)	22.58					2.5 (Ug < Ut; N/A)	
Required Pressure for a Single 1.5m ID Riser (atm)	91.73					10.00	
Solids Flux for a Single 1.5 m ID Riser (kg/m ² s)	2264.69	5661.71	1699	3397.03	4529.37	5661.71	452.88
Required Pressure for a Single 8 m ID Riser (atm)	3.23					22 110 - 114: N/A	
Solids Flux for a Single 8 m ID Riser (kg/m ² s)	79.62	199.04	59.71	119.43	159.24	199.04	Ug < Ut; N/A

Circulating Fluidized Bed Systems for Chemical Looping Reaction Applications

Single Loop High Density CFB System (Kirbas et al., 2007) Two Loop High Density CFB System (Kulah et al., 2008)

Kirbas G, Kim SW, Bi X, Lim J, Grace JR. Radial Distribution of Local Concentration Weighted Particle Velocities in High Density Circulating Fluidized Beds. Paper presented at: The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering; May 13-17, 2007; Vancouver, Canada.

Kulah G, Song X, Bi HT, Lim CJ, Grace JR. A NOVEL SYSTEM FOR MEASURING SOLIDS DISPERSION IN CIRCULATING FLUIDIZED BEDS. Paper presented at: 9th International Conference on Circulating Fluidized Beds; May, 13 – 16, 2008; Hamburg, Germany.

Mode 1 Fluidized Bed Reducer Processes Southeast Univ. PCLC WKU – 10 kW_{th}

- OC: iron ore
- 19 hours of operation with coal
- Coal Feed: bituminous 7 kg/hr (~50 kW_{th})

- Interconnected fluidized bed
- OC: Cu-based synthesized OC
- 10-hour operations
- Fuels Test: bitumen, asphalt, methane, syngas – no coal tests reported

1 MW_{th} Chemical Looping Combustion Pilot Unit

Alstom – Darmstadt MeO_x¹

- Mechanical solid conveying
- Carbon stripper required
- Multiple components difficult to integrate

1. Abdulally, I. et al. Clearwater Clean Coal & Fuel Conference 2012 43–54.

25 kW_{th} OSU Sub-Pilot CDCL Process for Coal Combustion

- Fully assembled and operational
- 500+ hours of operational experience
- 200+ hours continuous successful operation
- Smooth solid circulation
- Confirmed non-mechanical gas sealing under reactive conditions
- 13 test campaigns completed

200+ Hour Sub-Pilot Continuous Run - Sample Results

Once-Through Reducer Carbon Conversion Profile

- Continuous steady >90% carbon conversion from reducer throughout all solid fuel loading (5- 25kW_{th})
- <0.25% CO and CH₄ in reducer outlet = full fuel conversion to CO₂/H₂O
- <0.1% CO, CO₂, and CH₄ in combustor = negligible carbon carry over, nearly 100% carbon capture

CDCL NO_x/SO_x Analysis

	Reducer	Combustor
SO _x (ppm)	190-1170	0 - 70
NO _x (Ib/MMBTU)	0.100 – 0.200*	~ 0

*Conventional PC Boiler NO, Generation = 0.2 – 0.5 lb/MMBTU¹

25 kW_{th} OSU Sub-Pilot SCL Process for Hydrogen Generation Reducer Gas Composition

Recent Unit Demonstration

- Over 300+ hours operation
- Average CO₂ purity generated throughout run > 99%
- >99.99% hydrogen purity at steady state
- Steady Pressure Profile throughout Test run

Differential Pressure Profile

100 80 60 40 20 0 8:52:48 AM 10:19:12 AM 11:45:36 AM 1:12:00 PM

Oxidizer Gas Composition

Shale-Gas to Syngas (STS) Sub-Pilot Plant Data

Concluding Remarks

- Chemical Looping embodies all elements of particle science and technology - particle synthesis, reactivity and mechanical properties, flow stability and contact mechanics, gas-solid reaction engineering...
- OSU processes characterized by the moving bed reducer configuration are compact in design and high efficiency in operation. Success achieved in the operation of 200+ hour continuous sub-pilot CDCL run using coal and progress made in the on-going SYNGAS Chemical Looping pilot demonstration reflect the likelihood of commercialization of these technologies in the near future.

My Graduate Students and Research Associates

Ted Thomas	Shwetha Ramkumar	Zhenchao Sun
Himanshu Gupta	FuChen Yu	Mandar Kathe
Puneet Gupta	Fei Wang	William Wang
Alissa Park	Liang Zeng	Songgeng Li
Mahesh Iver	Deepak Sridhar	Andrew Tong
Luis Velazquez-Vargas	Ray Kim	Nihar Phalak
	Dawei Wang	Siwei Luo
Bartev Boghos Sakadjian	Elena Chung	Yao Wang
Danny Wong	Samuel Bayham	Niranjani Deshpande
Fanxing Li		Omar McGiveron
I C		Ankita Majumder