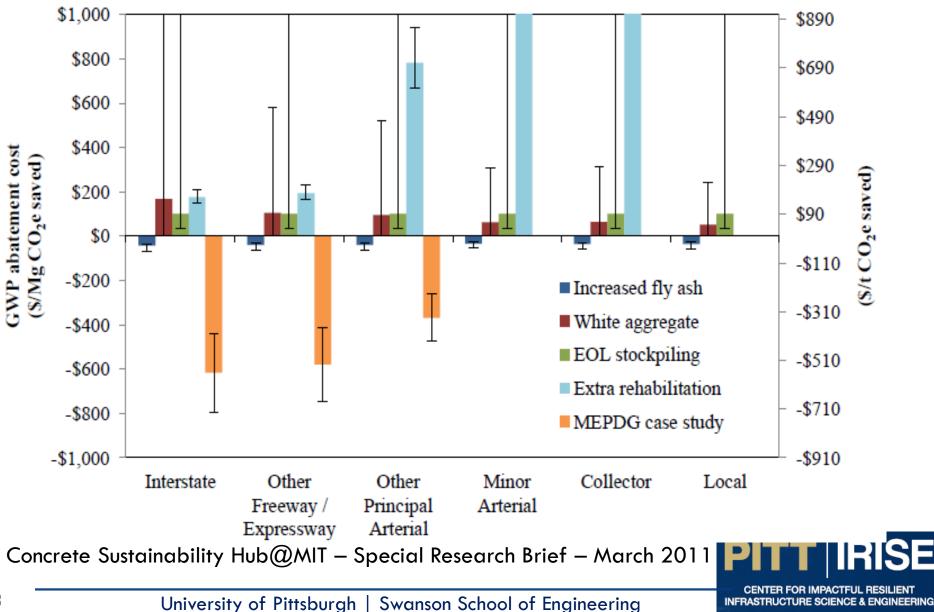
Development of Simplified Mechanistic-Empirical Design Tool for Pennsylvania Rigid Pavements

Lev Khazanovich

Haoran Li

University of Pittsburgh | Swanson School of Engineering


The Research Problem

The current Pennsylvania design method for rigid pavements is outdated

- □ AASHTO 93-based procedure (1960-s technology)
- Not cost-effective: many empirical evidences of overdesign built into AASHTO 93
- Pennsylvania is considering a transition to AASHTO ME design, which requires the user:
 - to provide many inputs thus increasing possibilities of the design errors
 - to use AASHTOWare Pavement ME software with annual license fees

Why AASHTO ME Design?

3

Pavement ME JPCP Design Inputs

General JPCP inputs	✓ JPCP Design ■ DCC surface a backware above the iteration.	0.05				
		0.85				
			2), Diameter(1.25)	/		
/		Erosion resi				
. /			n with friction loss at (0) mon	iths		
		15				
· //		✓ -10				
· //	Sealant type O	Other(Inclu	uding No Sealant Liquid	Silicone)		
	✓ Tied shoulders	Tied with Ic	ong term load transfer efficie	ency of 50		
. ///	Tied shoulders T	True	-			
	Load transfer efficiency (%)	✓ 50				
· ///		Not widene	ed			
	· · · · ·		~			
 Doweled joints 	Spacing(12), Diameter(1.25)					
Dowel diameter (in)	✓ 1.25	Danne				
Dowel spacing (in)	☑ 12	Dowe	<mark>el bar design</mark>			
Is joint doweled ?	Тгие					
 PCC-base contact friction 	Full friction with friction loss at (0) m	months	PCC-base bondin			
PCC-Base full friction contact	True			aing		
Months until friction loss			conditions			
Unbonded JPCP	False					
	I DISC					
 PCC joint spacing (ft) 	15					
Is joint spacing random ?	False					
Spacing of Joint 1						
Spacing of Joint 1 Spacing of Joint 2		Joint	spacing			
Spacing of Joint 2 Spacing of Joint 3		•••••	sharing			
Spacing of Joint 4	✓ 15					
Joint spacing (ft)						
 Tied shoulders 	Tied with long term load transfer effic	iciency of	50			
Tied shoulders	Тгие					
Load transfer efficiency (%)	✓ 50	٢	Shoulder type and			
 Widened slab 	Not widened					
ls slab widened ?	False		lane width			
Slab width (ft)	\checkmark					
	Liniversity of Bitteburgh Department of Civil a	· -				
	Listucrate of Dittaburgh Department of Chulles	and En	viroppoptol par	(DOORIDO		

University of Pittsburgh Department of Civil and Environmental Engineering

Unive

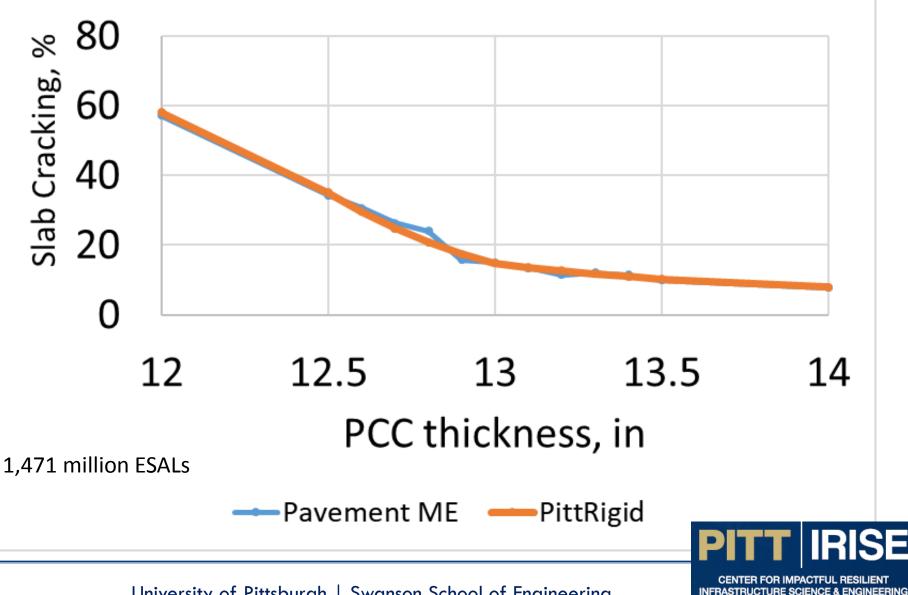
4

Research objectives

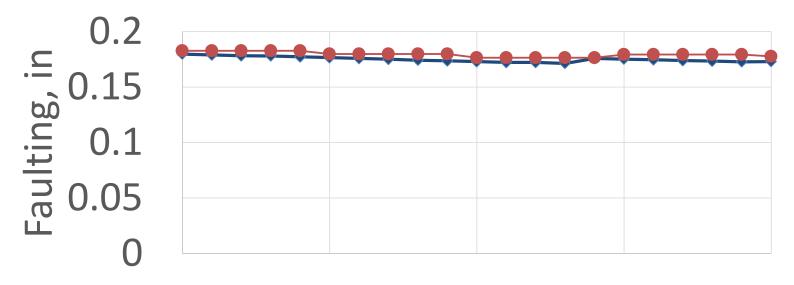
- Provide effective, localized design tool to Pennsylvania pavement engineers compatible with the AASHTOWare Pavement ME program similar to MnPAVE Rigid, the tool used by MnDOT
- Accelerate implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG)
- Reduce potential of design errors from the improper use of the AASHTOWare Pavement ME software
- Reduce or eliminate license fees required to perform MEPDG design using the AASHTOWare Pavement ME software

Project Objectives

- Provide effective, localized design tool to Pennsylvania pavement engineers compatible with the AASHTOWare Pavement ME program similar to MnPAVE Rigid, the tool used by MnDOT
- Accelerate implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG)
- Reduce potential of design errors from the improper use of the AASHTOWare Pavement ME software
- Reduce or eliminate license fees required to perform MEPDG design using the AASHTOWare Pavement ME software


Project Approach/Deliverables

- □ Task 1. Literature and Software Review and Sensitivity Analysis
- Task 2: Perform Pavement ME Factorial and Develop Simplified Design Tool, PittRigid-ME
- □ Task 3: Conduct PittRigid-ME Verification
- Task 4: Final Report


n Faulting Cracking True	ck Volume ESALs				
🗹 Design	Project name: New Project	Performance models coefficient PennDOT defaults			
Climate region	Region 1: Erie County				
Design life, years	20				
Cracking reliability, %	90 Faulting reliability, % 90				
Two-way AADTT year 1	1000 Compound growth, % 3				
Number of lanes (two-way)	2 Traffic pattern Urban Principal Arterial-Interstate	•			
Joint spacing, ft	12 -				
Slab Width	Conventional width (12 ft)				
Shoulder type	Tied PCC				
Modulus of rupture, psi	631 COTE, 10 ⁻⁶ 1/ ⁰ F 4.5				
Base type	Aggregate				

Comparison of Cracking Predictions

University of Pittsburgh | Swanson School of Engineering

Comparison of Faulting Predictions

12 12.5 13 13.5 14
 PCC thickness, in
 →Pavement ME → PittRigid

260 million ESALs

CENTER FOR IMPACTFUL RESILIENT INFRASTRUCTURE SCIENCE & ENGINEERING

University of Pittsburgh | Swanson School of Engineering

Web-Based Version

https://pittrigid.azurewebsites.net/

PITT IRISE PittRigid ME Version 1.0

Help:

Open a PDF file with the project report report.

Design	Climate							
Yes 🗸	Region	Region 1: Erie County			~			
Design Life, years:		Cracking Reliability, %		Faulting Re	eliability, %			
20		90		90				
Two-way AADTT	Compour	,	iber of	Lanes	Traffic Pattern			
Year 1	3	(two	way)		Urban Principal	Arterial-Interstate		~
1000		2		~				
Joint Spacing, ft		Slab Width		Shoulder T	уре	Ba	se Type	
12	~	Conventional width (12	*	Tied PCC	> v		Aggregate	~
PCC Flexural Streng	jth, psi	COTE, 10 ⁻⁶ 1/°F						
631.0		4.5	~					
Submit Settings								

Application of Research Results

- Design of new concrete pavements
- Implementation of the AASHTO ME design procedure for concrete pavements in Pennsylvania without software license fees
- Simplification of design and reduction of design errors
- Pavement type selection
- Improvement/local calibration of AASHTO ME for Pennsylvania conditions

