Towards Using Microbes for Sustainable Construction Materials: A Feasibility Study

Sarah Pitell¹, Evan Trump¹, Steve Sachs¹, Sarah-Jane Haig^{1,2}

1. Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

2. Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

Preventing & fixing damage to reinforced concrete is a major challenge

Cracks reduce lifetime of structures and cost \$21 billion annually to repair

- Current remediation strategies are expensive, temporary, and environmentally hazardous
- Bioinspired design may be the solution to making reinforced concrete more environmentally friendly

Bioinspired sustainable concrete repair: Microbially induced calcium precipitation

Substrate + **Bacteria** \rightarrow Metabolites + CaCO₃

 \Box A wide range of organisms can produce CaCO₃

Ureolytic microbes offer the most promise

- > Live in aerobic and anaerobic environments
- Does not produce harmful byproducts
- Fast production of CaCO₃

MICP has been used to restore limestone and marble structures but its application for reinforced concrete has been largely unexplored.

Project Objectives

- A. Conduct a literature review to identify ureolytic microbes which can be used for MICP
- B. Isolate microbes that can be used for MICP that exist in reinforced concrete in-situ.
- C. Evaluate the mechanical properties of concrete mix design which incorporate nutrients for MICP
- D. Evaluate the self-healing and leaching properties of precracked bench-scale concrete specimens developed in C

Isolation of ureolytic MICP microbes from real reinforced concrete maximizes future success

Swab concrete

Assessing Potential MICP microbes
Ability to form precipitate
> agar column injection & XRD
Speed of growth
> growth kinetics

Subculture bacteria which fulfilled

MICP traits

Overall 22 microbes isolated capable of MICP
5 best taken on for biomortar and cracked concrete testing

MICP Biomortar is a sustainable option to repair cracked concrete

Tested various MICP biomortar mixtures

- 3:8 mixture of 7 day old MICP (1.4 x 10⁷ cfu/ml) and sterile sand.
- 5:2:0.4 mixture of sterile sand, 7 day old MICP and binder
- Preliminary results show water ingress reduced by 15-30%
 - Bacteria from I-70 deck most effective
 - Currently repeating using 17 more blocks.
- Biomortar application is stable >4 months & no harmful products leach out (still monitoring)

PITT IRISE

Conclusions and Future Directions

□ Isolated 22 bacteria capable of MICP from pre-existing concrete

Develop a biologically active mortar using environmental isolates to repair cracked surfaces (*Testing ongoing*)

- > Best isolate reduced water ingress by 30%
- > No harmful byproducts are leached out by strategy.

Developed new concrete formations (containing urea) which promote MICP and don't impact structural characteristic of concrete

Future directions

Test new MICP concrete formulation with MICP microbes encapsulated within concrete – prevent cracking before it begins.

Acknowledgements

Dr. Steve Sachs

Bin Wu

Bashear El-Hajj

Jeremy Hughes (PennDot District 12)

Mascaro Center for Sustainable Innovation

