Early Opening of Concrete Pavements to Traffic

Lev Khazanovich Julie Vandenbossche

The Research Problem

- Current traffic-opening criteria
 - empirical
 - overly conservative (Crovetti and Khazanovich, 2005)
 - causing unnecessary construction delays and cost
- Concrete strength measurements
 - indirect (based on strength of cast aside beams or cylinders) or destructive (coring)
 - expensive

Strength Opening Criteria

State	Age for Opening (days)	Minimum Compressive Strength (psi)	Minimum Flexural Strength (psi)	Comments
DE		3500		
IL	14	3500	650	
MD	7	3000		
MI	7	2600	550	-Flexural strength must be met before opening regardless of other values
NJ	10	3000		
NY (Construction)	7	2500		-Min 3 days if meets strength
NY (Traffic)	10	3050		-Min 4 days if meets strength -15 days if not between 6/1-9/15
OH			400	
PA	7	3000		
TX (Construction)	2	2800	450	
TX (Traffic)	7	3500	750	
VA	14		600	

MnROAD Study

Loading 2 hours after paving

Van Deusen et al, 2018

University of Pittsburgh Department of Civil and Environmental Engineering

Unive

MnROAD Study

Loading 3-11 hours after paving

University of Pittsburgh Department of Civil and Environmental Engineering

Unive

Research objectives

Develop a strategy that can be implemented by the IRISE members for optimal timing of traffic opening.

Project Objectives

- Provide effective, localized design tool to Pennsylvania pavement engineers compatible with the AASHTOWare Pavement ME program similar to MnPAVE Rigid, the tool used by MnDOT
- Accelerate implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG)
- Reduce potential of design errors from the improper use of the AASHTOWare Pavement ME software
- Reduce or eliminate license fees required to perform MEPDG design using the AASHTOWare Pavement ME software

Project Approach/Deliverables

- Task A: Literature review
- □ Task B: Laboratory and field testing
- Task C: Develop mechanistic-empirical model
- Task D: Conduct traffic simulation
- Task E: Final Report

Laboratory and Field Testing Strength Testing

ASTM

PITT IRISE

Laboratory and Field Testing Maturity Testing

University of Pittsburgh | Swanson School of Engineering

RISE

Laboratory and Field Testing Maturity Testing

http://wikipave.org/index.php?title=Maturity_Testing

University of Pittsburgh | Swanson School of Engineering

PITT IRISE

Laboratory and Field Testing Maturity Testing

Laboratory and Field Testing Ultrasound Tomography Testing

Shear wave velocity -> Concrete Modulus of Elasticity -> Strength

Mechanistic-Empirical Model

Application of Research Results

Reduction of construction time and cost

Reduction of traffic congestion and user cost

