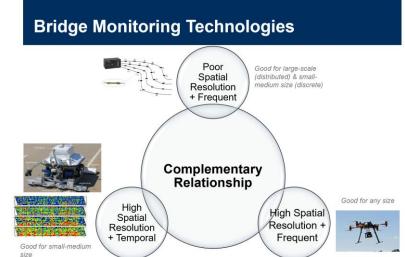
Improving Bridge Assessment through the Integration of Conventional Visual Inspection, Non-Destructive Evaluation, and Structural Health Monitoring Data

University of Pittsburgh – IRISE (Dr. Amir Alavi) Rutgers University – CAIT (Dr. Frank Moon) Wiss, Janney, Elstner Associates Inc. – (Dr. Saeed Babanajad)



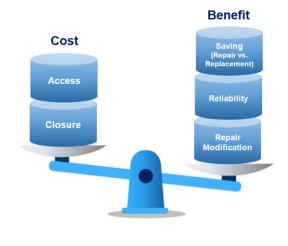
The Research Problem

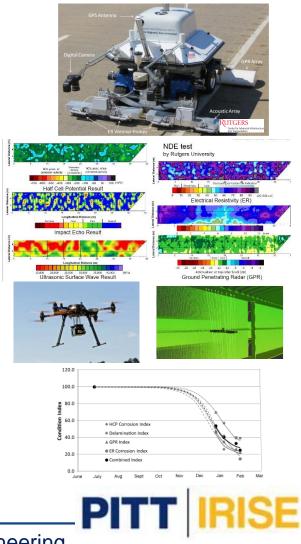
- Large costs and relatively long intervals between inspections for large scale of civil infrastructure systems caused by access issues
- Current assessment approaches are generally subjective in nature and provide only qualitative data reflective of surface or near-surface condition
- Huge gap exists in the establishment of effective approaches to fuse the collected massive NDE and SHM data

A more comprehensive integration framework to integrate the results taken from NDE/SHM/visual inspection is needed

Project Objectives

- Establish a framework capable of leveraging emerging SHM and NDE techniques to provide improved performance assessment of bridges
- Addressing the principal challenges associated with studying the service life of bridge structures:
 - Long-time scales (which requires accelerated aging)
 - The diverse outputs related to bridge condition (in terms of data collected through SHM, NDE, and visual inspection)
- Identifying the synergies among bridge degradation, remaining service life, and the results taken from the multimodal sensing technologies (SHM, NDE, and UAV-based)


Project Approach/Deliverables


Tasks:

- □ Collection of High-Resolution and High-Temporal Data from the BEAST Specimen
- Processing of Collected Data
- Advanced Statistical Data Analytics
- Development of Recommendations

Deliverables:

- Final Report
- Technical Articles
- □ Technical Events (TRB, NEBPP)

Schedule/Status

□ The start dates for the project was December 1, 2019

Due to COVID-19 pandemic, the Rutgers BEAST operation paused since March 1, 2020

□ The second round of data obtained from the BEAST testing facility showed no deterioration after exposing the specimen to 800K loading cycles

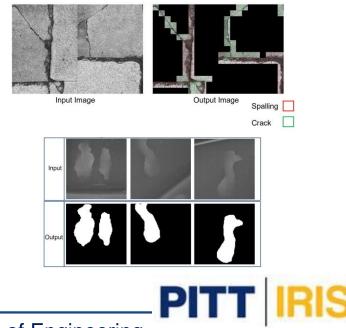
□ Th team acquired massive bridge deck deterioration data from Utah State University and the University of Waterloo, as well as concrete structures in Pittsburgh

□ A vision-based crack, spall and delamination detection software program has been developed accordingly^{1,2}

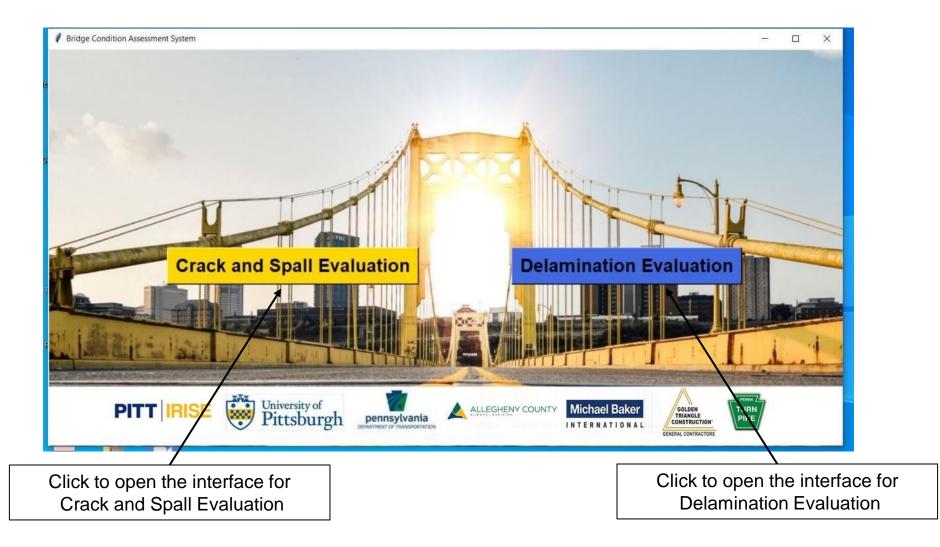
□ The BEAST or any other bridge deck data could be feed into the algorithm directly

	Year 1				Year 2			
Months	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: Collection of Data from the BEAST Specimen								
Task 2: Processing of Collected Data								
Task 3: Advanced Statistical Data Analytics								
Task 4: Development of Recommendations								
Draft Final Report								
Final Report								

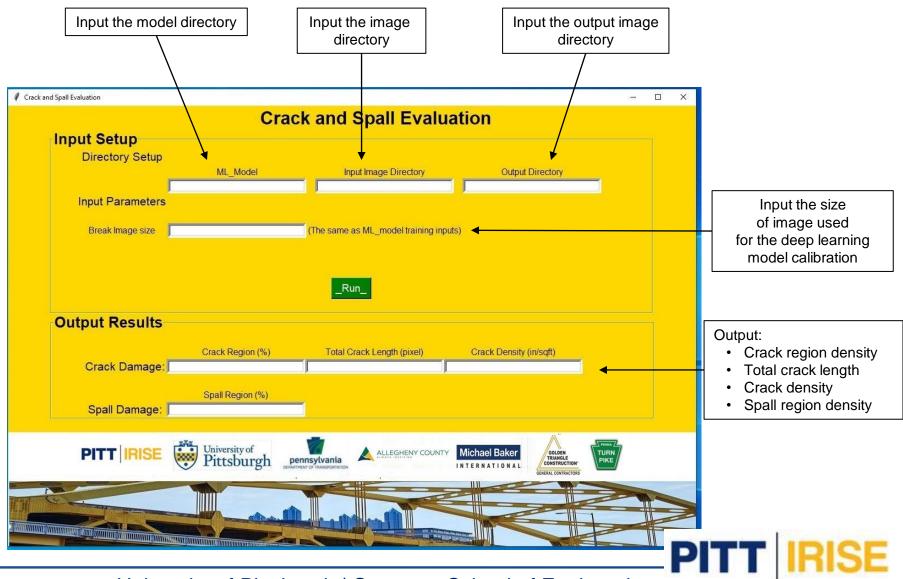

¹ Q. Zhang, K. Barri, S. K. Babanajad, A. H. Alavi, "Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in Frequency Domain" Subjected to Minor Revision, Engineering, Elsevier, 2020. (Impact Factor: 6.495) ² Q. Zhang, L. Ruzzi, T. Macioce, F. Moon, A. Alavi, "Automated Detection and Quantification of Cracks and Spalls in Concrete Structures Using Deep Learning" To be Submitted to TRB 2021.


Application of Research Results

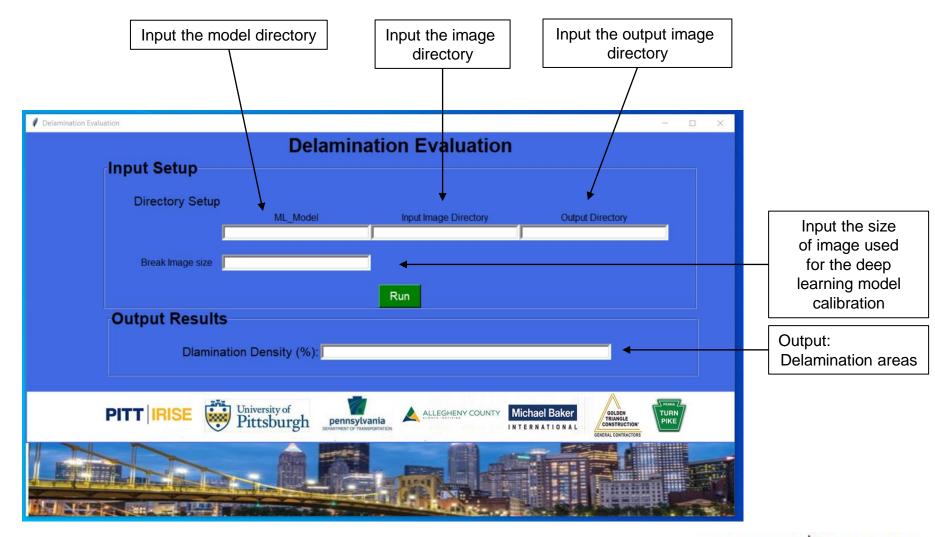
- Pitt Bridge Condition Assessment System (PittBCAS): Automated detection and quantification of cracks, spalls and delaminatrion in concrete structures using deep learning
- Spalling and delamination densities are the two main parameters in the current PennDOT rating system for concrete bridge decks
- □ The crack density is also most useful for the prediction of useful life of bridge decks
- Images taken manually by the PennDOT personnel or via their UAVs can readily be fed into the PittBCAS software to calculate the densities of the cracked, spalled and delaminated areas
- □ The calculation speed is about 5 seconds per square foot of the deck


		Condition Indicators								
Category Classification	Rating	Deck Area		Electrical	Deck	Chloride Content				
		Visible Spalls	Delam- ination	Potential	Area	(#/CY)	Deck Area			
Category #3	9	none	none	0.0	none	0	none			
Light	8	none	none	0.0 < E.P.< 0.35	none	0 < C.C.<1	none			
Deterioration	7	none	< 2%	0.35 < E.P.< 0.45	≤ %5	0 < C.C.<2	none			
Category #2 Moderate	6	< 2% spalls or sum of all deteriorated and/or contaminated deck concrete (≥2#/C.Y.Cl) < 20%								
Deterioration	5	(22#/C.1.Cl) < 20% < 5% spalls or sum of all deteriorated and/or contaminated deck concrete 20% to 40%								
Category #1 Extensive Deterioration	4 3	>5% spalls or sum of all deteriorated and/or contaminated deck concrete 40% to 60% $>5%$ spalls or sum of all deteriorated and/or contaminated deck concrete $>60%$								
Structurally	2	Deck structural capacity grossly inadequate								
Inadequate	1	Deck has failed completely - Repairable by replacement only								
Deck	0	Holes in deck - Danger of other sections of deck failing								

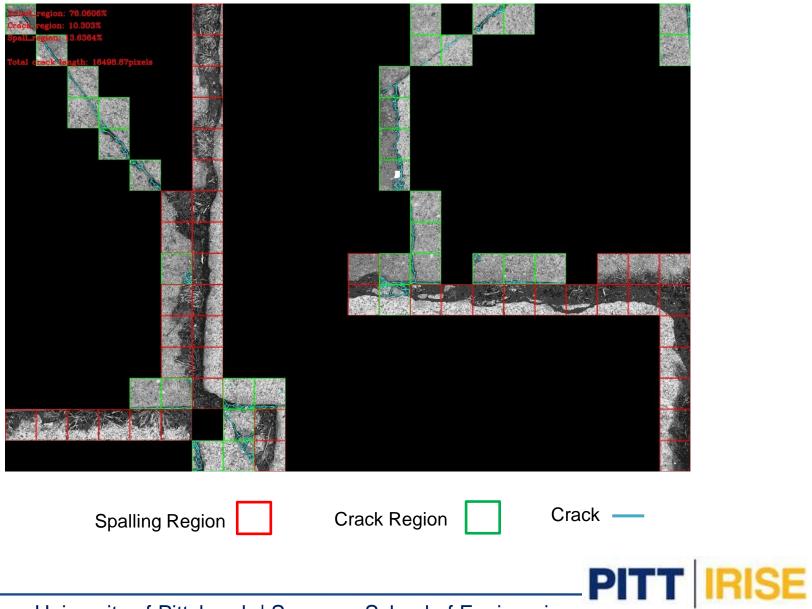
Condition Rating for Concrete Bridge Deck Evaluation:



Pitt Bridge Condition Assessment System (PittBCAS)



Crack and Spall Evaluation



Delamination Evaluation

Output Example

