Joint Design Optimization

IRISE ANNUAL MEETING

-May 17, 2023-

Julie Vandenbossche Zach Brody Charles Donnelly

The Problem

Premature joint sealant failure

- Incompressibles:
 - Spalling
 - ☐ Blow-ups
- Moisture:
 - Accelerated dowel corrosion
 - Faulting

Project Objectives

- Evaluate current
 - sealant types,
 - 2. reservoir designs, and
 - construction practices
 - to identify opportunities for improvement
- Develop guidelines to optimize joint reservoir design accounting for key design and material parameters

Schedule/Status

- ☑ Task A: Literature review on joint sealants
- ☑ Task B: Performance data review
- ☐ Task C: Joint reservoir design to be submitted soon
- ☐ Task E: Development of joint design strategies
- ☐ Task F: Draft final report
- ☐ Task G: Final report

Task B: Performance in the field

- Data
 - PennDOT database size: 28,582 datapoints
 - ☐ Turnpike database size: 1,638 datapoints
- Distresses evaluated
 - Spalling
 - Faulting
 - Blow-ups not considered
- ☐ Factors considered
 - Construction year
 - Number of years in service (age)
 - Sealant type (Type II, Type IV)
 - Location
 - Joint spacing

Task B: Performance in the field

Spalling

- 94% of sections had less than 10% joints spalled (< 10 yrs old)</p>
- Type II sealants (2008 2018) were prone to spalling
- Spalling occurred as a result of Installation of reflective taping on Turnpike
- Faulting
 - Does not have precision needed

Task C: Joint reservoir design

Evaluate reservoir design method Jt. open/closing Ambient temp & RH Concrete material prop. = F(RH & restraint) Slab length Friction factor (?) Joint Reservoir Sealant Initial Saw Cut Backer rod **Dowel Bar** Joint Activation

SR-22 in Murrysville, PA District 12

- □ 18-year-old heavily instrumented
- ☐4-lane urban major arterial

Static Strain Gages

Static Pressure Cell

Dowel and tie bars in restrained section

Jt Opening and Closing

Findings from Smart Pavement:

- Not resealed in 20 plus years and still performing well
- ☐ Joint closing restrictions occurred as early at 3 to 5 years
- CTE in lab similar to CTE in the field
- Underestimate joint movement with current friction factor by 65%

Laboratory testing

- ☐ Factors to be considered:
 - Sealant type
 - Joint movement
 - Reservoir design
 - Environmental exposure
 - Construction

Results will be used to inform design guidelines

Laboratory testing

Key Parameters:

- Sealant type (II, IV, silicone, neoprene)
- Reservoir design
- Joint activation
- Construction

Laboratory testing

Modified permeability test

Quantify rate of water entry
Determine degree of exposure to salt

Acknowledgements

Project Panel

Chuck Niederriter, Golden Triangle Construction
Lydia Peddicord, PennDOT
Yathi Yatheepan, FHWA
Matthew Blough, PA Turnpike
Charles Buchanan, PA Turnpike
Jason Molinero, Allegheny County

