A Refined Approach to Coal

Carlos A. Cabrera President and CEO

National Institute of Clean & Low-Carbon Energy (NICE) Beijing, China

pgi0499 www.fotosearch.com

World Energy Consumption (June, 2010)

Data source: BP Statistical Review of World Energy, 2010

nie

World Coal Consumption (1990-2009)

Data source: BP Statistical Review of World Energy, 2010

nie

Top 5 CO₂ Emitters: IEA Ref. Case

	20	05 2015		015	2030	
	Gt	rank	Gt	rank	Gt	rank
US	5.8	1	6.4	2	6.9	2
China	5.1	2	8.6	1	11.4	1
Russia	1.5	3	1.8	4	2.0	4
Japan	1.2	4	1.3	5	1.2	5
India	1.1	5	1.8	3	3.3	3
Sub-Total	14.7		19.9		24.8	

Everybody has a problem.....who owns it?

SOx, NOx, Hg and particulates are more urgent

G

Transport Sector Poses Major Challenge for Renewable Fuels

Renewable Energy: Solar and Wind

Despite Rapid Growth Impact on World Scale is Negligible

CO₂ Emissions by Fuel (1971-2007)

In 2007 Coal accounted for 42% of global CO₂ emissions *and* 26% of global energy consumption

Source: IEA CO₂ Emissions from Fuel Combustion Highlights (2009 Edition)

nie

Coal; CO₂ Emissions

* data from BP Statistical Review of World Energy, 2010, the net efficiency estimated as 35%

nie

CO₂ Emission Reduction

CO ₂ Emission Reduction (Million tons)	5% Efficiency Improvement of Coal Utilization ^{a)}	Solar & Wind Displacing Coal (or Oil, Natural Gas)
Global	1623	91 (77, 54)
US	246	18 (15, 11)
China	761	13 (11, 8)

- a) The calculations are based on 2009 data, the current efficiency estimated as 35%;
- b) CO₂ emission factors are 3.96, 3.07 and 2.35 ton-CO₂/toe for Coal, Oil and Natural Gas, respectively, from BP Statistical Review of World Energy, 2010.
- Increasing efficiency of coal utilization -- a very effective way to reduce CO₂ emissions.
- Co-processing & utilization of biomass with coal s further reduces CO2.

Challenges for China

Total Primary Energy Consumption by 1000 \$ GDP

TOE/1000\$ GDP	2005	2006	2007	2008	2009
Japan	0.114	0.119	0.118	0.104	0.092
US	0.189	0.177	0.172	0.163	0.153
China	0.702	0.648	0.552	0.464	0.443

China: 37% improvement in last 5 years,

Data source: GDP data from World Bank; TPES data from BP Statistical Review of World Energy, 2010

National Institute of Clean & Low-Carbon Energy (NICE)

To meet growing demand on energy, and yet reduce the emissions, NICE was established in Dec., 2009.

NICE is a national research institute focused on energy which is funded by the Shenhua Group, an integrated energy conglomerate.

nie

Corporate Profile of Shenhua Group

One of the SOEs, established in 1995

The largest coal company in China and the largest coal supplier in the world

- An integrated energy conglomerate with its businesses extending from coal to power, railway, port and CTL & coal chemical, featuring its cross-regional, multi-industrial and diversified operations
- No 6 and No 3 respectively in terms of its coal-fired installed capacity and wind power installed capacity
- 29 subsidiaries (Branches), 159,000 employees and RMB 411.1 billion total assets

NICE Mission, Areas of Focus

Aims at the cutting-edge sustainable and affordable technology with no adverse impact on climate change and environment and focuses on

- Novel Routes for Conversion and Upgrading of Coal & Biomass
- Novel Materials and Systems for Clean and Low Carbon Energy Applications
- Emission Reduction of Coal Power Plants & IGCC
- CCS and CO₂ Utilization including Enhanced Oil Recovery (EOR)
- Renewable Energy and Chemicals
- Modern Coal Power Plants / Energy Storage
- Coal to Natural Gas
- Syngas to Fuels and Chemicals

Dic

World Coal Reserves: Million tons at end 2009

Data source: BP Statistical Review of World Energy, 2010; Ministry of Land and Resources of PR China

nie

Low Rank Coal (LRC) Challenges

Low heating value, high moisture & volatiles

- Low price, high transportation costs
- > Higher plant capital, lower efficiency, carbon footprint
- Limitation as feedstock: poor slurriability

Highly active: handling issues, spontaneous ignition hazards

New Look at Old Coal Utilization – Coal Refining

nie

Coal & Biomass to Pyrolysis Liquids and Natural Gas

- ✤ Coal to Natural Gas efficiency: 60~65%
- Single step, CAPEX much lower than Coal and Biomass to Liquids via F-T
- Infrastructure ready
- Pipe line transport Natural Gas & Oil: lower cost than transporting coal
- Ash and water stay in coal mine
- Inherent CO₂ separation. Both CO₂ and ash may be captured in the mine
- Natural Gas Gasoline hybrid vehicles ?
- Natural Gas emits less CO₂ (~30%) per mile than gasoline or diesel (CH₄ vs. CH₂)
- Modern digester technology to convert biomass to Natural Gas ?

Natural Gas: an affordable, lower carbon, flexible alternative fuel

Thermal Efficiency from Different Coal Chains

nie

CO₂: Regulations & Policy

- Enhance energy conservation, efficiency Industry, buildings, transport Mandatory fuel efficiency standards
- Enhance energy security, particularly fossil hydrocarbons
- Emissions reduction
 - CO₂ emissions technology break through
 - More stringent vehicle emissions standards
 - SO_x emissions: Possible bunker fuel sulfur reduction
- Environmental legislation
 - CO₂, Climate Active Gas Emissions
 - Let the markets work, learn from Natural Gas experience

CO₂ emissions; US policy.....Nuclear energy ?

Summary

- Coal is and will be one of the most important energy resources in the world.
- Renewable energy will show most growth, but remain small percentage of total supply.
- □ More attention should be paid on low rank coal utilization.
- Fossil Energy research should focus on SOx, NOx, Hg, particulates reduction and more efficient conversion routes for coal and cost effective conversion of CO₂.
- □ Coal refining is an attractive new way to improve utilization of coal.
- **Storing** CO_2 with EOR is one of the most attractive approaches for CCUS.
- Coal and biomass to produce NG and pyrolisis liquids -- a higher efficiency solution.
- Solutions best left for the Market to choose.

nie

Acknowledgments

➢ Dr. Ke Liu, Vice President & CTO of NICE

≻Dr. Changning Wu, Engineer

Dr. Xiaofen Guo, Senior engineer

Back up

Estimated Incremental Costs for a Pulverized Coal Unit

to meet today's best demonstrated criteria emissions control performance vs. no control

	Capital Cost (\$/kW _e)	Operation & Maintenance Cost (¢/kW _e h)	Cost of Electricity ^{a)} (¢/kW _e h)
Particulate Control b)	40	0.18	0.26
NO _x	25 (50-90)	0.10 (0.05-0.15)	0.15 (0.15-0.33)
SO ₂	150 (100-200)	0.22 (0.20-0.25)	0.52 (0.40-0.65)
Incremental control cost	215	0.50	0.93 ^{c)}

a). Incremental COE impact, bituminous coal

- b). Particulate control by ESP or fabric filter included in the base unit costs
- c). When added to the "no-control" COE for SC PC, the total COE is $4.78 \, \ell/kW_e h$

Data source: MIT Study on the Future of Coal, 2007

nie

CO₂ emissions by fuel & sector

Data source: IEA CO₂ Emissions from Fuel Combustion Highlights (2009 Edition)

nie

LRC Refining Opportunities

LRC

- Low Hv,~4000Kcal/Kg
- High moisture: ~30%
- Sulfur: 0.6%(DAF)
- Highly unstable

LRC Refining Technology Commercially available!

Poor quality Low selling value Transportation costs Handling difficulties

Huge market potentials:

- •Large LRC market: ~50% coal reserves in China, ~50% coal reserves in US
- •With the high value products, market is not limited to LRC. In fact, the economics is much better for the Shenhua's oil-rich coal in Northern Shaanxi & Inner Mongolia

www.nicenergy.com

Refined coal

- Improved Hv,~6000Kcal/Kg
- Reduced moisture: ~8%
- Sulfur: 0.44%(DAF)
- Stable, similar as sub-bituminous
 High value liquid products (Pyrolysis Oil)

28

Significantly Improved quality High value-adding oil products Suitable for Transportation Stable and safe

Modern Coal Power Plants Become a Chemical Plant

- Increasing importance of Chemical processes in modern coal-fired power plants
- Traditional power plant designs by thermal engineers, large room to improve/optimize
- System integration between chemical and thermal processes

A Look At A Typical Coal Plant Reflects An Historical View Of The Problem- Slide From PNNL

nic

www.nicenergy.com

Slides from PNNL Source: Southern Company

Storing CO₂ with EOR

> Oil fields get old, requires injection of water & polymers for EOR, CO_2 is better than water for EOR

Illustration of "Next Generation" Integration of CO₂ Storage and EOR

nie