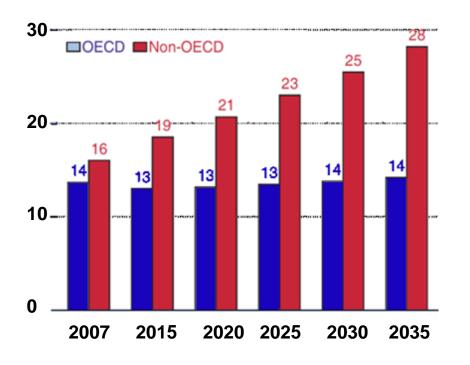

U.S. Department of Energy's Carbon Capture and Storage Efforts and Results

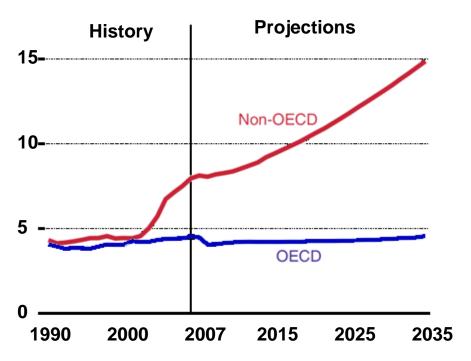
Charles E. Taylor – Director, Chemistry and Surface Science Division

World Energy Demand Today

World Energy Demand 2030


Fossil Energy Will Continue to Provide Primary Supply

NATIONAL ENERGY TECHNOLOGY LABORATORY


U.S. data from EIA Annual Energy Outlook 2009 with Projections to 2030 Report #:DOE/EIA-0383(2009). World data from EIA International Energy Outlook 2009 Report #:DOE/EIA-0484(2009)

Projected World Growth in CO₂ Emissions (EIA-IEO 2010 BAU Projection)

World energy-related CO₂ emissions (gigatonnes)

World CO₂ emissions from coal combustion (gigatonnes)

EIA's International Energy Outlook 2010 Reference case -- current laws and policies remain unchanged

NATIONAL ENERGY TECHNOLOGY LABORATORY

Report #:DOE/EIA-0484(2010), July 2010 http://www.eia.gov/oiaf/ieo/index.html

FE Coal R&D Program A History of Innovative Solutions

1970's	1980's	19	1990's	
Clean Air Act	Oil Embargo	Acid Rain	Utility Deregulation	Climate Change
 National response to address air quality concerns Profound impact on existing (and future) coal burning power plants 	 Exposed the Nation's vulnerability to oil supply disruptions U. S. imposes price controls on domestic oil – search for alternatives 	 National trans- boundary response to natural resource preservation Identifies SO₂ and NOX from fossil energy use as principal culprits 	 Changed utility business model Competitive pricing drives investment efficiency - private sector investment in R&D reduced 	 A global issue President targets 80% reduction in CO2 by 2050 Congress considers cap-and-trade
	gies for existing plants target N coal plants; 1/2 to 1/10 cost of ✓ Coal processing technolog • Successful demonstration		als)	fossil's programs made a significant contribution to the well-being of the United States, lead to realized economic benefits, energy options for the future, and significant knowledge National Academy of Sciences 2001: "Energy Research at DOE (1978-2000) - Was it Worth it?
technology advancements w achieved that can provide energy benefits and are available to be du if market conditions materialize ability to use the nation's large	vere security eployed the	re & post-combustion capture ocessing & separation (gasifie	v efficient, zero emission, affor e, site characterization, MVA, B ers, O2/H2 membranes, feed-p A-SOFC, oxy-combustion, che	Best Practices) ump, gas cleaning
reserves in an efficient manner improved substantially National Academy of Sciences "Energy Research at DOE (1978 Was it Worth it?	2001:the Regional I internationally	. the Partnerships Programme will s comprehensive and expansive resea	ignificantly advance and accelerate th	r CCS in the United States, Canada and e CCS field. The individual projects will f which is unique throughout the world nerships Phase III".

NATIONAL ENERGY TECHNOLOGY LABORATORY

٩

Coal Program R&D Evolution

PAST

PRESENT

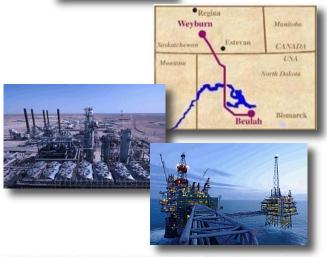
Power Generation Efficiency Reliability Criteria Pollutants

Power and Multiple Products Efficiency Reliability Air Toxics Water Use Greenhouse Gases

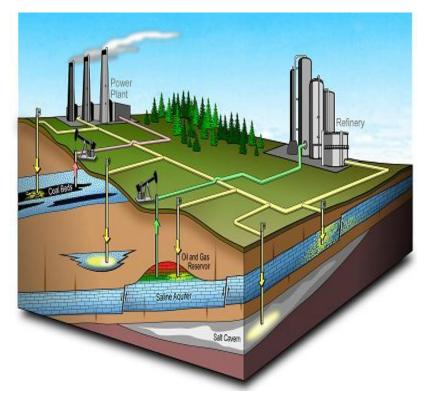
Deployment 1985 - 2020

Challenges for Fossil Energy CCS

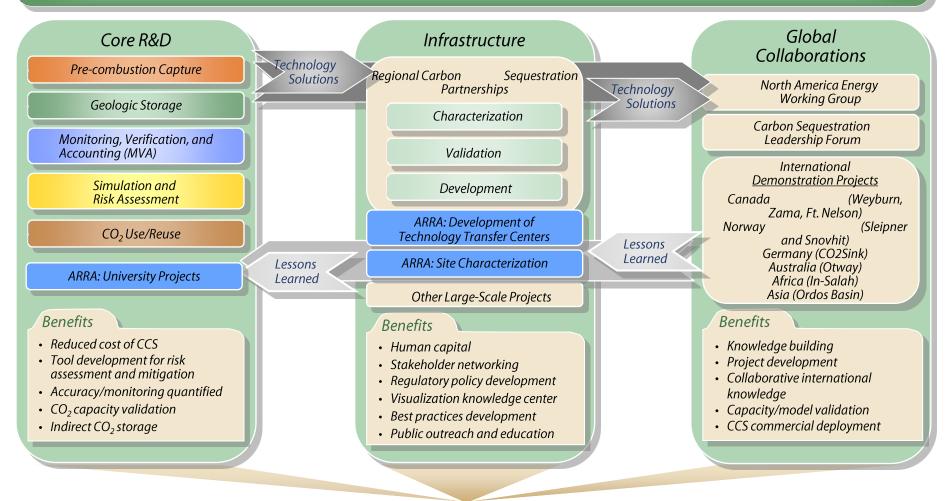
Reducing COE Penalty for CCS


- 30 40% increase for IGCC with current technology
- 70 80% increase for PCC with current technology
- Proving the capability and capacity for geologic storage
- Finding viable beneficial uses for CO₂
- Reducing regulatory and financial uncertainty to encourage private investment
 - Establish the regulatory framework
 - Resolve pore-space ownership
 - Provide long term stewardship
 - Address liability issues
- Developing needed infrastructure
- Obtaining public acceptance
- Deploying cost-competitive CCS technology for both new <u>and</u> existing power plants

CCS Commercial Experience


- Carbon capture technology is commercially available
 - Post-combustion capture at 20-80 MWe coal power plants
 - Pre-combustion (coal gasification) capture at full scale
- CO₂ injection into geologic formations is widely practiced today
 - EOR: 48 million TPY in 2007
 - 3,900 mile pipeline network
 - 50 Acid gas injection projects
 - Megatonne/yr injection projects
 - Weyburn-Midale
 - Sleipner
 - In Salah
 - Others

Carbon Storage Program Goals Develop Technology Options That...


- Deliver technologies & best practices that provide
 Carbon Capture and <u>Safe</u> Storage (CCSS) with:
 - 90% CO₂ capture at source
 - 99% storage permanence
 - < 10% increase in COE</p>
 - Pre-combustion capture (IGCC)
 - < 30% increase in COE</p>
 - Post-combustion capture
 - Oxy-combustion

CCS Program Objectives

- Develop and demonstrate advanced, increasingly cost-effective capture (separation and compression) technologies, enabling commercial deployment beginning in 2020.
 - Must be applicable to situations in developing economies,
 - Must be retrofittable to existing facilities, i.e. cost effective, low energy penalty, compact physical footprint.
- Characterize U.S. geologic source and sink potentials and infrastructure configurations for CCS by 2020 for the majority of U.S. stationary source CO2 emissions. (including offshore sub-seabed formations)
- Validate scientifically and technically-based tools and practices to determine safe, effective long-term geologic storage by 2020.
- Demonstrate large-scale integrated next generation game-changing technologies for stack capture while improving efficiency, capacity and minimizing water impacts associated with capture.
- Enable early, broad-scale CCS opportunities for beneficial use of CO2 via demonstrations.
- Collaborate on and leverage international CCS RD&D activities.

U.S. DEPARTMENT OF ENERGY • OFFICE OF FOSSIL ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY CARBON SEQUESTRATION PROGRAM with ARRA Projects

Demonstration and Commercialization Carbon Capture and Storage (CCS)

Mission & Approach Critically Linked to DOE Climate & Security Goals


Develop Technologies and Best Practices That Facilitates Wide Scale Deployment of Coal Based Energy Systems Integrated With CCS

- Develop plant designs & components optimized for CCS
- Reduce capture costs
- Validate storage capacity
- Validate storage permanence
- Create private/public partnerships
- Promote infrastructure development
- Put "first of kind" field projects in place
- Develop tools, protocols & best practices

DOE Regional Carbon Sequestration Partnerships

Fossil Energy CO₂ Capture Solutions

Cost Reduction Benefit

Coal Funding Cross-Cut

(\$ in Thousands	FY09	FY 2010	FY2011	Areas Targeted
(US))	Enacted	Enacted	Request	
Capture	66,000	66,500	81,200	Pre- and Post- combustion capture, with emphasis on Post- combustion. Technologies will reduce capture cost and energy penalties.
Storage	134,000	139,500	126,800	Regional Partnerships, MVA, Simulations, Risk Assesment
Efficiency Improvements	176,236	170,000	148,000	ITM - O2 Separation; H2 Turbines; Materials for USC Systems;Gas cleaning, Advanced CO2 compression; MW-scale Fuel Cells
Cross Cutting Research	28,000	28,000	47,850	FY2011, new multi-year national laboratory partnership for physics- based computer modeling and simulation from the molecular level to the integrated plant level, and geologic reservoir modeling
CCS Demos	288,174	0	0	Large scale CCS demonstrations are currently funded by Recovery Act and prior year approps.
TOTAL COAL	692,410	404,000	403,850	

Bottom line FY2011 Coal request is nearly identical to FY2010 enacted level, with budget shifts to focus on postcombustion carbon capture and a new laboratory modeling and computer simulation effort.

ф

Interagency Task Force on CCS

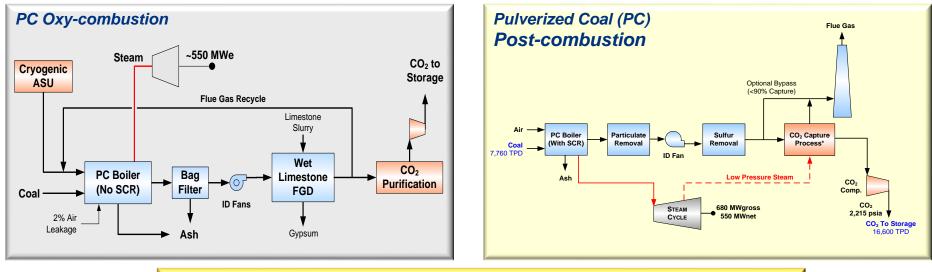
- Established by President Obama on Feb 3, 2010
- Co-Chaired by DOE and EPA; participation of 14 Executive Departments and Federal Agencies
- Charged to develop a plan to overcome the barriers to deployment of CCS within 10 years
 - Goal of bringing 5 to 10 commercial demonstration projects online by 2016

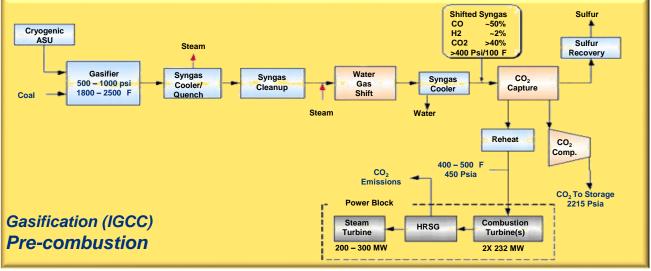
Conclusions/Recommendations

- "Scaling up" existing CCS processes and integrating them with coal-based power generation poses technical, economic, and regulatory challenges
- RD&D programs such as those currently being conducted by DOE can help reduce project uncertainty and improve technology cost and performance
- Long-term integrated testing and validation programs are needed
- Barriers to CCS Deployment:

ക

- The lack of comprehensive climate change legislation is the key barrier
- Challenges such as legal and regulatory uncertainty can hinder project development
- Public awareness and support are critical
- DOE and EPA should create a Federal agency roundtable to act as a single P.O.C. for project developers
- Continue to support international collaboration
- Federal agencies must work together to design regulatory requirements for CCS using existing authorities
- Efforts to improve long-term liability and stewardship frameworks should continue.
 - Open-ended Federal indemnification should <u>not</u> be used to address long-term CO₂ storage liabilities
- DOE and EPA should develop a comprehensive outreach strategy

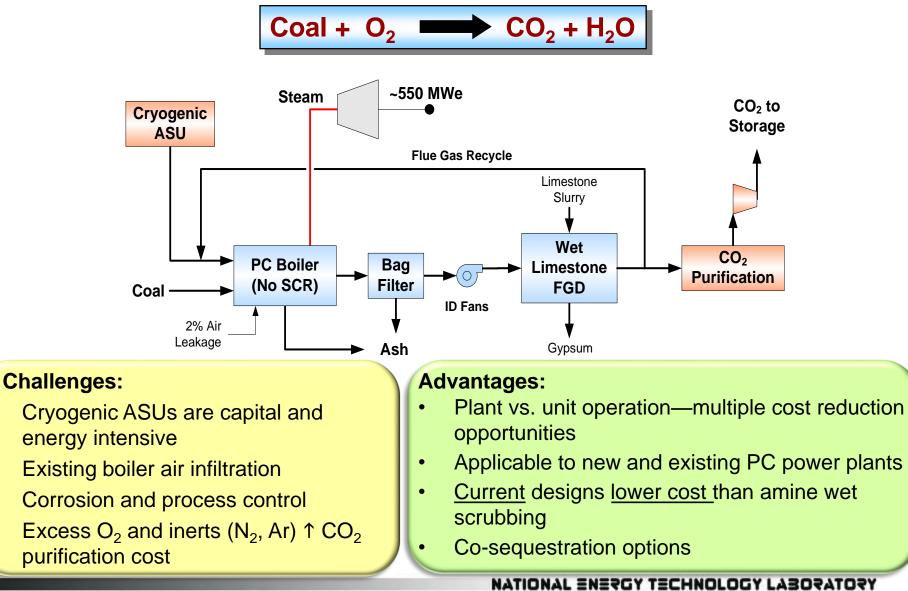

The American Recovery and Reinvestment Act of 2009 (ARRA)


- Provides and Additional \$3.4 Billion for Fossil Energy Research and development to:
 - Develop and Demonstrate CCS Technology in partnership with Industry
 - Transition this technology to Industry for their Deployment and Commercialization

• Objectives of FE's Portion of ARRA are:

- Demonstrate CCS technology to reduce Greenhouse gas emissions from the Electric Power and Industrial sectors of the economy
- Become the World's Leader in Science and Technology
- Implement Projects to Support Economic Recovery

Fossil Energy CO₂ Capture Options



NATIONAL ENERGY TECHNOLOGY LABORATORY

Source: Cost and Performance Baseline for Fossil Energy Power Plants study, Volume 1: Bituminous Coal and Natural Gas to Electricity; NETL, May 2007.

đ

Pulverized Coal Oxy-combustion

Reference: Pulverized Coal Oxycombustion Power Plants—Volume 1 Bituminous Coal to Electricity, U.S. Department of Energy/National Energy Technology Laboratory, Revision 2 Final Report, August 2008

٠

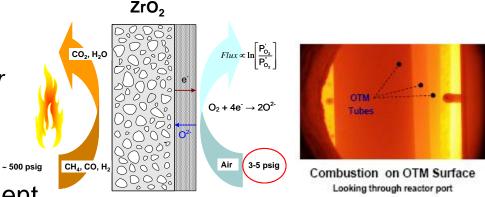
•

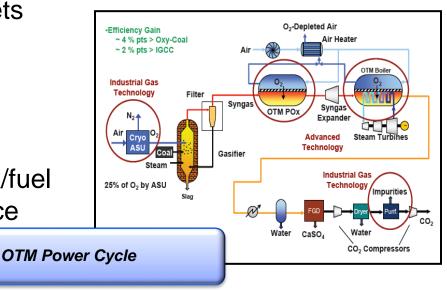
•

ക

Oxycombustion: O₂ Membrane

Advantages:

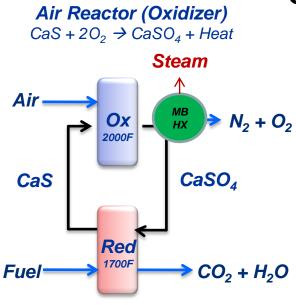

- O₂ consumed as it is made - "OTM Boiler"
- >70% reduction in ASU power


Challenges:

- Reliability of OTM tubes
- Engineering design of equipment
- Meeting cost & performance targets
- Pulverized coal applications

Current State: Laboratory Scale

 Significant improvement in O₂ flux/fuel utilization → met R&D performance targets


Oxycombustion: Chemical Looping

Chemical Looping Advantages:

- Oxy-combustion <u>without</u> an O₂ plant
- Potential lowest cost option for near-zero emission coal power plant <20% COE penalty
- New <u>and</u> existing PC power plant designs

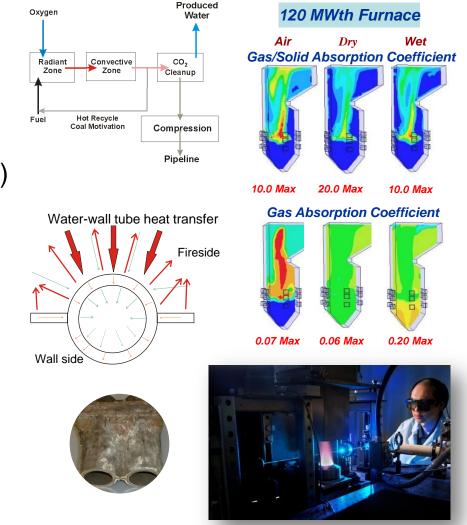
Key Challenges

- Solids transport
- Heat Integration

Fuel Reactor (Reducer) $CaSO_4 + 2C + Heat \rightarrow 2CO_2 + CaS$ $CaSO_4 + 4H_2 + Heat \rightarrow 4H_2O + CaS$

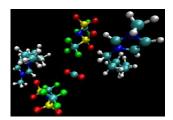
Oxy-Firing without Oxygen Plant

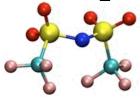
- Solid Oxygen Carrier circulates between Oxidizer and Reducer
- Oxygen Carrier: Carries Oxygen, Heat and Fuel Energy
- Carrier picks up O₂ in the Oxidizer, leaves N2 behind
- Carrier Burns the Fuel in the Reducer
- Heat produces Steam for Power

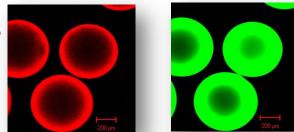

Oxycombustion: Advanced Boilers

Research

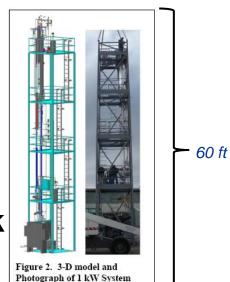
- Develop models for combustion, radiation, heat transfer
- Investigate methods to integrate CO₂ purification with thermal cycle
- Evaluate material performance in existing (600 °C)/advanced (760 °C) steam cycles


Status


- Grey-gas radiation model and particle model under development
- Fireside corrosion test: exposure tests with ash and flue gas; oxide fluxing behavior in ash and flue gas
- Integrated Pollutant Removal (IPR) licensed
- Flame emissions and heat transfer measurements in boilers


Post-combustion CO₂ Capture

- Amine-based scrubbing
- Advanced CO₂ Solvents
- Ionic Liquids
- Designing IL's via Molecular Simulations
- Solvents: Potassium Carbonate
- Phase Transitional Absorption
- Solid Sorbents: Metal Organic Framework
- Solid Sorbents: Pilot-scale development
- Reactors for CO₂ Dry Sorbents
- Advanced Flue Gas CO₂ Membranes



1-n-hexyl-3,5dimethylpyridinum bis(trifluoromethanesulfonyl)amide

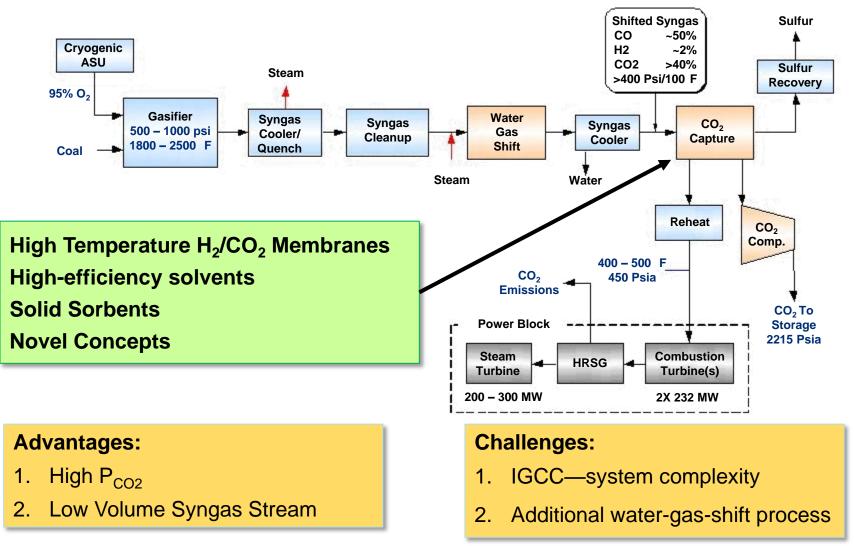
Schematic shows how layers (red/green & black) are deposited. Experimental deposition on 600 micron porous spheres showing "tagged" red/green adsorbent Deposition via confocal fluorescence microscopy.

Advanced CO₂ Compression

tour 1) **R&D** Focus 5 7470+01 5.429e+01 Reduce capital costs 5.111e+01 4.793e+01 Increase efficiency 4.475e+01 Integration with CO₂ capture process 4 1570+01 3.839c+01 Modeling 3.521e+01 Heat recovery 3.203e+01 Reduced footprint 2.885e+01 567e+0 10.000 Approach: solid Supercritical fluid 1.000 Compression process transitions Pressure (bar) from superheated to supercritical Liquid adia 100 phase Avoids liquid (sub-cooled) phase 10 oline gas Dual Pinion Configuration -100 n 100 200 300 400 500 Temperature (F) CO, Out • PR ~ 100:1 (suction pressure ~15 psia) Electric Motor Two stages Stage efficiency ~85%

CO₂In

ക


National Carbon Capture Center (NCCC) at Power Systems Development Facility (PSDF) Wilsonville, AL

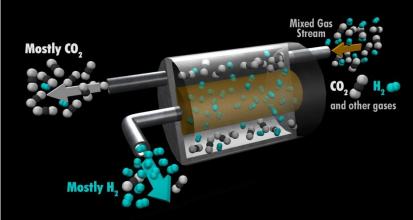
NCCC Mission: Develop technologies that will lead to the commercialization of cost-effective, advanced coal fueled power plants with CO₂ capture

- 6 Mwe Transport Gasifier
- 3 Mwe Post-Combustion Slipstream
- Southern Company
 - Peabody Energy
 - American Electric Power
 - Luminant
 - Arch Coal
 - RioTinto
 - Electric Power Research Institute

IGCC Pre-combustion CO₂ Capture Technologies

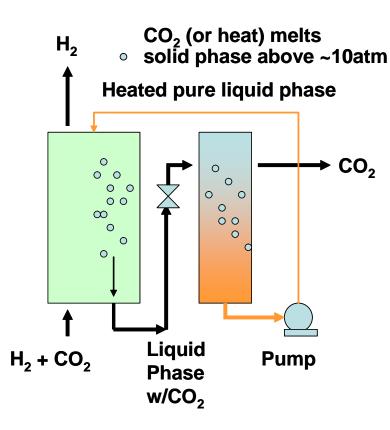
NATIONAL ENERGY TECHNOLOGY LABORATORY

(**æ**)


IGCC Pre-Combustion Polymer-Based High Temperature Membrane

R&D Focus

Developing a high temperature polymer-based membrane and fullscale module development for precombustion capture


Accomplishments:

- Developed polybenzimidazole (PBI) based membrane exhibits the *highest* <u>operating temperature (400 °C)</u> of a polymer-based membrane.
- Over 400 days of testing in simulated synthesis gas environments at temperatures exceeding 250 °C conducted while demonstrating:
 - permeabilities and selectivities of commercial interest
 - operation temperatures well matched to process temperatures
 - chemical stability to primary synthesis gas components
 - mechanical stability in the presence of process cycling and simulated upset conditions

•

IGCC Carbon Capture: Phase Change Polymer

Concept for syngas CO₂ Capture w/phase change polymer

- Vessel on left is a fixed bed of solids (some polymer based)
- High pressure CO₂ is introduced (IGCC applications)
- Solids transform into homogeneous liquid phase, and extracted from bottom of vessel
- Pressure is decreased (only a small amount) in regeneration vessel, CO₂ is generated and the solids reform
- Heat is added to reliquify polymer and pump back to absorption column

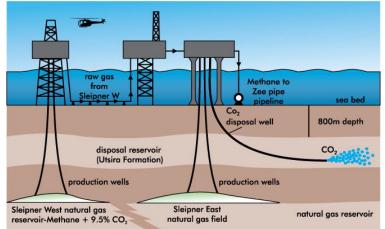
Global Collaborations Technology Transfer and Lessons Learned

Examples of Current Collaborations:

Sleipner (Norway, Europe)

- 1 Mt CO₂/y <Commercial 1996>
- StatoilHydro

• In Salah (Algeria, Africa)


- 1 Mt CO₂/y <Commercial 2004>
- BP, Sonatrach, Statoil Hydro

Weyburn-Midale (Saskatchewan, Canada)

- 1.8 Mt CO_2/y <Commercial 2000>
- Encana, Apache

Fort Nelson (British Columbia, Canada)

- >1 Mt CO₂/y , 1.8 MT acid gas/yr
 <Demo Scale>
- Spectra Energy

Sleipner Project Schematic

In Salah Gas Field, Algeria

DOE's Global CCS Project Involvement

Location	Operations	U.S. Invol.	Reservoir	Operator /Lead	Int'l Recognition
North America, Canada Saskatchewan Weyburn-Midale	1.8 Mt CO ₂ /yr commercial 2000	2000-2011	oil field carbonate EOR oil field carbonate EOR	Encana, Apache Apache (Reg. Part.)	IEA GHG R&D Programme, CSLF CSLF
North America, Canada, Alberta Zama oil field	250,000 tons CO ₂ , 90,000 tons H ₂ S demo				
North America, Canada, British Columbia Fort Nelson	> 1 Mt CO _{2/} yr, 1.8 Mt acid gas/yr large-scale demo	2009-2015	saline formation	Spectra Energy (Reg. Part.)	CSLF
Europe, North Sea, Norway Sleipner	1 Mt CO ₂ /yr commercial 1996	2002-2011	marine sandstone	StatoilHydro	IEA GHG R&D Programme, CSLF, European Com.
Europe, North Sea, Norway Snovhit CO2 Storage	700,000 tonnes CO ₂ commercial 2008	2009-TBD	marine sandstone	StatoilHydro	
Europe, Germany CO2SINK, Ketzin	60,000 tonnes CO ₂ demo 2008	2007-2010	saline sandstone	GeoForsch- ungsZentrum, Potsdam(GFZ)	CSLF, European Commission, IEA GHG R&D Prog
Australia, Victoria Otway Basin	100,000 tonnes CO ₂ demo 2008	2005-2010	gas field sandstone	CO2CRC	CSLF
Africa, Algeria In Salah gas	1 Mt CO ₂ /yr commercial 2004	2005-2010	gas field sandstone	BP, Sonatrach, StatoilHydro	CSLF, European Commission
Asia, China, Ordos Basin	assessment phase CCS	2008-TBD	Ordos Basin	Shenhua Coal	

Final Observations

- CCS technology is available today, however:
 - It is very expensive, energy intensive, and not fully proven
- Sequestration needs to be more widely demonstrated, especially in deep saline reservoirs with large-volume CO₂ injection
- DOE RD&D program is targeting the key issues
- Regulatory certainty is a prerequisite for commercial action.

Virtual Power Plant Retrofit for Carbon Management

¢

Visit Our Websites

Fossil Energy website: www.fe.doe.gov

ø

NETL website: www.netl.doe.gov