
DUMKA_E
An Event Based Control (EBC)

Traffic Signal Controller

DUMKA_E Programming Manual

January 2024

Denis Sarazhinsky Department of Transport Systems and Technologies, Belarusian National
Technical University, Minsk, Belarus, 220013 (sarazhinsky@mail.ru)

Taraneh Ardalan Department of Civil & Environmental Engineering, University of Pittsburgh,
3700 O’Hara Street Pittsburgh, Pittsburgh, PA 15261, USA (taa93@pitt.edu)

Aleksandar Stevanovic Department of Civil & Environmental Engineering, University of
Pittsburgh, 3700 O’Hara Street Pittsburgh, Pittsburgh, PA 15261, USA (stevanovic@pitt.edu)

Development of the Event-Based Traffic Control Concept: Dr. Denis Sarazhinsky
Development of the DUMKA_E Software: Dr. Denis Sarazhinsky
Prototyping DUMKA_E Manual: Dr. Denis Sarazhinsky
Crafting DUMKA_E Manual: Taraneh Ardalan, Dr. Denis Sarazhinsky, Dr. Aleksandar Stevanovic

mailto:sarazhinsky@mail.ru
mailto:taa93@pitt.edu
mailto:stevanovic@pitt.edu

Table of Contents
1. Introduction... 7

1.1. Purpose of this Manual.. 7

1.2. Event Based Control (EBC) Signal Traffic Controller... 7

1.3. Contents of this Manual... 9

2. Basic Concepts...10

3. Moving Around Inside DUMKA_E... 16

3.1. Window Interface Descriptions...16

3.2. Main Window..19

4. Signal Groups... 20

5. Conflicts.. 29

6. Stages ... 32

7. Primary Sensors (Detectors) and Logical Sensors... 34

8. Events Maps... 38

9. Operative Map Editing Algorithms.. 59

10. Programs ... 84

11. Emulation ... 89

12. Examples... 98

Appendix A: Primary and Transitional Control, Vienna Convention.........................103

Appendix B: Signal Schemes Examples.. 106

Appendix C: Cyclic Patterns... 125

List of Figures

Figure 1. Event Based Controller Graphical Interface.. 8
Figure 2. Meta-signal Example... 10
Figure 3. Primary, Transitional, and General Meta-signal.. 12
Figure 4. Common Traffic Signal Head Arrangement.. 13
Figure 5. Controlled Entry, Controlled Directions Group, and Signal Group........................... 15
Figure 6. DUMKA_E Interface and Section.. 18
Figure 7. Signal Groups Overview..20
Figure 8. Exemplary Intersection to Define Signal Groups...22
Figure 9. Defining Signal Groups - STEP 1..23
Figure 10. Defining Signal Groups - STEP 2.. 24
Figure 11. Defining Signal Groups - STEP 3.. 25
Figure 12. Signal Groups - Defining Intersection Approach Zone....................................... 26
Figure 13. Graphical Representation of Intersection in Topology.. 27
Figure 14. Defining the Unwanted Transitional Signals..27
Figure 15. Defining Signal Groups - Adding Another Controlled Direction Group....................28
Figure 16. Defining Conflicts - Overview... 30
Figure 17. Defining Conflicts - Conflicts Matrix..30
Figure 18. Defining Conflicts - "Intergreen" Times Table...31
Figure 19. Explanation of Stage Concept... 32
Figure 20. Example of Stage-based Signal Control Diagram (Cyclic).................................... 33
Figure 21. Defining Sensors and Analyzers - STEP 1..35
Figure 22. Defining Sensors and Analyzers - STEP 2..36
Figure 23. Defining Sensors and Analyzers - STEP 3..37
Figure 24. Events Map Overview..38
Figure 25. Signal Event-Based Control Methodology...39
Figure 26. Signal Event Graph, T-Intersection Example...40
Figure 27. Transparent Signal Representations... 41
Figure 28. Abstract Signal Events Map, T-Intersection Example Figure 26............................. 42
Figure 29. Concretized Signal Event Map, T-Intersection Example Figure 26......................... 43
Figure 30. Visual Representation of the Signal Events in Figures 28 & 29.............................. 43
Figure 31. Variants of Prime Cyclic Pattern of the same Signal Map in Figure 26................... 44
Figure 32. Working with Events Maps Overview.. 45
Figure 33. Events Map Bank Content Browser - Maps Explorer Button Location..................46
Figure 34. Events Map - Create a Map.. 46
Figure 35. Graphical Representation of the Newly Created Signal Events Map....................47

Figure 36. Access to Editor Section of Event Map... 48
Figure 37. Map Editor Interface.. 49
Figure 38. Adding a New Event to the T-Disposition Column...50
Figure 39. Editing Event Features..51
Figure 40. Adding a New Column to the T-Disposition.. 52
Figure 41. Adding a New Column to the T-Disposition.. 53
Figure 42. Precedence Relations Between Events.. 54
Figure 43. Wellness Status...56
Figure 44. Scheme of Adaptive Control Process..59
Figure 45. Operative Signal Events Map..60
Figure 46. T-cyclic Pattern Types... 64
Figure 47. Overview Working with Events Maps Overview.. 66
Figure 48. Access to Operative Map Editing Algorithms.. 66
Figure 49. Accessing Algorithm Banks for Signal Event Map Editing.................................... 67
Figure 50. Add a New Algorithm...68
Figure 51. New Algorithm Representation..68
Figure 52. Creating Operational Map Editions for Algorithm Development............................69
Figure 53. Dialog Box for Adding a New Edition.. 69
Figure 54. New Edition for Algorithm Integration..70
Figure 55. Edition Editor Interface.. 71
Figure 56. Selecting an Editing Action for an Event: Using the Editing Actions Button.... 72
Figure 57. Algorithm Flow-Chart Tab Overview..73
Figure 58. Declaration Table Overview...74
Figure 59. Expression Creator.. 74
Figure 60. Access to Editing the Sub-Expression through Interactive Strip........................... 75
Figure 61. Available Sub-Expression Patterns... 76
Figure 62. Creating Desired Pattern...77
Figure 63. Functions and Numerical Expressions.. 78
Figure 64. Logical Expressions.. 79
Figure 65. Algorithm Flow-Chart Editor.. 80
Figure 66. Flow Chart Creating Process.. 81
Figure 67. Access to Programs.. 85
Figure 68. Accessing Programs Bank.. 85
Figure 69. Add Program Action.. 86
Figure 70. Overview of Programs...86
Figure 71. Time Table Components... 87
Figure 72. Edit Time Table Values... 87

Figure 73. Events Minimum Diversities Components...88
Figure 74. Signal Diagram Representation.. 88
Figure 75. Emulation Tab Overview.. 90
Figure 76. Representation Details... 91
Figure 77. Add Detectors to Emulation...92
Figure 78. Added Detector Emulation.. 92
Figure 79. Fast-forwarding the Emulation Time... 96
Figure 80. Algorithm Tracing Window.. 97

List of Tables

Table 1. Chapters' Descriptions... 9
Table 2. Main Tabs Summaries..19
Table 3. Corresponding Qualitative Data for Figure 8...21
Table 4. Most Common logical sensors in EBC DUMKA_E... 34
Table 5. Urgency Graphical Representation...41
Table 6. Transitional Signals... 43
Table 7. Intergreen Times Table..43
Table 8. Main Editing Actions... 62
Table 9. Typical Representation of Editions for a Regular Map... 65
Table 10. Primary Control Signals for Vehicles.. 103
Table 11. Primary Control Signals for Pedestrians...104

Event-Based Controller DUMKA_E Manual Chapter One - Introduction

1. Introduction
1.1. Purpose of this Manual
The purpose of the manual for the signal Event-Based Control (EBC) traffic controller, known as
DUMKA_E, is to offer clear, concise, and comprehensive instructions for experienced traffic

engineers and traffic controller operators interested in integrating flexible traffic signal control
strategies into their projects. The manual provides detailed information on the basic concepts
and principles of the signal Event-Based Control (EBC) traffic controller framework, along with
instructions on programming the traffic signal controller DUMKA_E using this framework. It
offers step-by-step guidance for performing common tasks and serves as a reference for

troubleshooting, problem-solving, and debugging. In summary, the manual is designed to be a
valuable resource for users during the implementation and operation of DUMKA_E in their
system.

1.2. Event Based Control (EBC) Signal Traffic Controller
The Event-Based Control (EBC) Signal Traffic Controller DUMKA_E is a flexible traffic signal

controller that is designed to handle conflicting requests arising from various road users using an
event-driven paradigm. Its logic is based on signal events, which are defined as the change in
signal display determined by the user-defined algorithm in the controller and the responses from
the controller. The DUMKA_E virtual controller uses a precedence-based approach to process
signal events and adjusts signal timings, accordingly, enabling it to respond to real-time traffic
conditions. It is intended to provide a more adaptive and efficient solution for traffic signal

control compared to traditional controllers’ frameworks. The EBC controller framework provides
a flexible environment and an efficient programmable system for traffic signal control based on
desired rules, allowing for programable actions applicable to common traffic control systems and
providing a foundation to develop logics that requires advanced flexibilities. The Graphical User
Interface of DUMKA_E, comprising its tabs, is illustrated in Figure 1.

7

Event-Based Controller DUMKA_E Manual Chapter One - Introduction

■ My Fixed Timed Control.dmk - DUMKA_E_v1.8.0 [Proof of concept] — □

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

[1] þ]

[1] ET-LX].

[1] Er.i.x],

[1] ΓΓ.Ι.Χ],

type sg# ent gdg tig sig.schm ming mins

Figure 1. Event Based Controller Graphical Interface

8

Event-Based Controller DUMKA_E Manual Chapter One - Introduction

1.3. Contents of this Manual
This manual is divided into 12 chapters, followed by appendices.

Table 1. Chapters' Descriptions

Chapters Description

1- Introduction Outlines the purpose of the DUMKA_E Manual

2- Basic Concepts Provides an overview of fundamental terminology

3- Moving Around Inside DUMKA_E Introduces the user interface of the DUMKA_E

4- Signal Groups Covers the essential steps in defining signal groups

5- Conflicts Covers the essential steps in defining conflicts

6- Stages Provides a summary of stages in DUMKA_E

7- Sensors-Analyzers (Detectors and

Processors)

Covers the essential steps in defining sensors

(primary and logical sensors)

8- Events Map Covers the essential steps in building events map

9- Operative Map Editing Algorithms
Covers the essential steps in building and editing
algorithms

10- Programs Covers the essential steps in developing programs

11- Emulation
Provides essential information about debugging and
emulation in DUMKA_E

12- Examples
Illustrates common control examples using
DUMKA_E

9

Event-Based Controller DUMKA_E Manual Chapter Two - Basic Concepts

2. Basic Concepts

This section provides an overview of the fundamental concepts and terminology used in the

software. This section aims to clearly and concisely define concepts and key terms used
throughout the manual. It is important for users to have a good understanding of the terms and
their meanings to use and program the EBC effectively and smoothly to meet their traffic control
goals. This section will serve as a reference for users to clarify terms and concepts that may be
unfamiliar.

Logical Control Signal (Meta-Signal)

Meta-signal is a logical signal message, based on the standardized meaning from the Vienna
Convention on Road Signs and Signals, Manual on Uniform Traffic Control Devices (MUTCD), or
the Australian Road Rules, that can be displayed to a road user through different signal
indications. It should be noted that the meta-signal could visually vary in different countries or
states, but the meaning of it is the same. As an example, Figure 2 shows the different indications
with the same message/meaning: the pedestrians who have not started crossing should wait,

while those already crossing can continue and finish crossing.

SwitzerlandBelams USA

i
I

Figure 2. Meta-signal Example

10

Event-Based Controller DUMKA_E Manual Chapter Two - Basic Concepts

The meta-signals can be divided into two categories:

Primary Logical Control Signal (Primary Meta-Signal)

A Primary Meta-signal is a type of meta-signal that conveys only primary control information:

• Type of controlled road user and the direction to which the signal applies.

• Right of way status (allowed/prohibited).

• Priority of passing in situations of conflict.

Transitional Logical Control Signal (Transitional Meta-Signal)

A Transitional Meta-signal is a type of meta-signal which follows the primary control information,
by conveying supplemental information about the transitional process. The types of transitional
processes are the beginning transition (B-transition) and/or the ending transition (E-transition),
each of which is associated with the relevant state of the primary control information.

11

Event-Based Controller DUMKA_E Manual Chapter Two - Basic Concepts

General Control Signal (General Meta-signal or Effective Meta-signal)

A General Meta-signal or Effective Meta-signal represents a group of meta-signals that share the
same primary control information (loosely speaking, same right-of-way information). Every meta­

signal in the group can be considered then as general meta-signal having some specific form -
eighter primary or E-/B-transitional form.
For example, the group “red meta-signal”, “yellow meta-signal”, and “red and yellow meta­
signal” is an example of an Effective Meta-signal since they share the same primary control
information of stopping or slowing down the traffic.
Figure 3 illustrates three general meta-signals consisting of three primary meta-signals and two
transitional meta-signals.

General control signal 1
primary form

General control signal 2
primary form

General control signal 3
primary form

General control
signal 2

B-transition fonn

General control
signal 2

E-transition forni

General control
signal 2

General control
signal 1

General control
signal 3

Figure 3. Primary, Transitional, and General Meta-signal

Different types of Primary and Transitional Meta-Signals based on the Vienna Convention are
presented in the Appendix A.

12

Event-Based Controller DUMKA_E Manual Chapter Two - Basic Concepts

Traffic Lights System (Traffic Signal Head Arrangement)

A traffic signal head arrangement is a class of signal heads that have the same layout of signal
sections of given shapes and colors. This arrangement (or its equivalent) must be allowed by the

Vienna Convention or other national standards (e.g., Manual on Uniform Traffic Control Devices).
Figure 4 shows some common traffic signal head arrangements.

Figure 4. Common Traffic Signal Head Arrangement

Name Canonic Layout of Lights

Vehicles

T

t f > Ì >

W •° ·

Y
ŕ >

R ooo

Pedestrian

P ' · Ì
Ш

13

Event-Based Controller DUMKA_E Manual Chapter Two - Basic Concepts

Traffic Light (Signal Head)

A Signal Head is any representative of traffic signal head arrangement.

Traffic Lights Group (Signal Heads Group)

The signal heads group is a collection of identical (or equivalent) signal heads of the same traffic
signal head arrangement that are aimed to have identical signal indications at any moment of
time.

Controlled Entry

The area of an intersection/crosswalk approach where signal indications of a specific signal head
can only have effect (as defined by the Vienna Convention) on traffic entering the
intersection/crosswalk.

Controlled Directions Group

Group of traffic directions (one or many), on a single controlled entry, controlled by the same
signal head which can never be controlled independently, due to displaying constraints of the
signal head.

Signal Scheme

Signal Scheme is an abstract scheme that clearly specifies how the given meta-signals can be
translated into signal indications for a particular traffic signal head arrangement.

More details of signal schemes examples in DUMKA_E is presented in Appendix B.

Signal Group

A group of paths through an intersection/crosswalk, whose movements are controlled by the
same meta-signal with the same signal scheme at any given time, as a choice of a traffic signal

engineer.

Figure 5 indicates the difference between Controlled Entry, Controlled Directions Group, and
Signal Group in an exemplary intersection.

14

Event-Based Controller DUMKA_E Manual Chapter Two - Basic Concepts

Controlled Directions Group

Controlled Entry

Signal Group

B
D

6

Figure 5. Controlled Entry, Controlled Directions Group, and Signal Group

As the reader begins to explore the new concepts of EBC DUMKA_E, it is important to note that
this section only provides a brief introduction. For more in-depth information, readers are
encouraged to consult the glossary at the beginning of each chapter, where the concepts are

explained in detail. Furthermore, some of the concepts are given their own dedicated chapters,
which provide a step-by-step explanation of all the details.

15

Event-Based Controller DUMKA_E Manual Chapter Three - Inside DUMKA_E

3. Moving Around Inside DUMKA_E
The chapter focuses on the different parts of the graphical user interface (GUI) of the EBC
DUMKA_E software. The chapter will describe the various menus and display panels that are
available to users. It will provide an overview of the purpose and function of each of these

components and explain how they can be used to navigate and interact with the software.
Overall, the chapter will provide a comprehensive introduction to the user interface of
DUMKA_E, enabling users to easily access and utilize the software's full range of features and
capabilities.

3.1. Window Interface Descriptions
The user interface is a crucial component of any software application. In the case of the EBC
DUMKA_E software, the user interface provides a graphical representation of the software's
functionalities and features. Users interact with the software via buttons, menus, and display
panels, which are all part of the user interface. The user interface allows users to perform
different tasks and operations, such as defining signal groups, defining conflicts, and developing

logic. The subsequent section provides a detailed breakdown of the overall architecture of EBC
DUMKA_E. Figure 6 illustrates a screenshot of the DUMKA_E software user interface consisting
of several modules where users’ input is required to develop logic for a traffic signal controller.

Program a Signal Controller in DUMKA_E: Essential Information Guide

The following text provides the minimum information needed to program the desired signal
control in DUMKA_E.

Step 1: Defining Signal Groups: To establish well-defined signal groups, it is necessary to provide
qualitative data (e.g., road user type, geometrical directions/approaches, etc.) and quantitative

data (e.g., signal group changing times, minimum greens, etc.).

Step 2: Defining Signal Groups Movements Conflicts: To prevent potential conflicts, it is crucial
to meticulously define signal groups with conflicting rights of way. Additionally, careful
consideration should be given to the “(safe) intergreen times”, the minimum duration between
the end of the right of way for one signal group, and the commencement of the right of way for
the conflicting group.

Step 3: Defining Signal Events Map: Constructing a signal events map hinges on the creation of

a map detailing every signal event. A signal event in EBC is defined as the change in signal display
determined by a user-defined algorithm in EBC. This map is a chronological compilation of signal
events linked by precedence relations based on their occurrences in a timely manner.

Step 4: Defining Logical Sensor (if needed): To simplify the handling of traffic data, logical sensors
could be used. Defining the logical sensor(s) is a step that involves the post-processing of

16

Event-Based Controller DUMKA_E Manual Chapter Three - Inside DUMKA_E

detection data and the pre-processing of controller data. This step takes place only if there are
physical detectors installed in the field. Based on the acquired data from physical detectors,
logical sensors generate high-level logical quantity values. Examples of such logical sensors
include:

• “Right-of-Way-Demand-Detector”: This logical Sensor outputs zero if, at the moment, there
are no unserved road users in the detection zone; otherwise, it outputs 1.

• “Right-of-Way-Usage-Gap-Out-Detector”: This logical Sensor reports a 0 if, during the green
phase, there is no gap exceeding the given threshold value for traffic related to the specified
signal group; otherwise, it outputs 1.

Step 5: Defining Modification Algorithm for Operational Signal Events Map: This section offers

information to design an algorithm that, when activated, can modify the specified operational
signal diagram. To define it, the following information should be specified:

• “What” should be modified:
o The portion of the signal event map under consideration for flexible changes (e.g.,

part of the current cycle, the next cycle, or both).

o Signal event map “changing actions” that are intended for application (e.g., shorten
green, skip green etc.)

• “When” it should be modified:
o Flow-chart-like control logic defining moments when the “changing actions” should

be applied to the signal event map.

An Operational Signal Diagram is a real-time representation of the signal diagram (i.e. time-series
of signals for each signal group) indicating activated signals (realized part of the diagram) or
scheduled activations (planned part of the signal diagram) for each signal group at any moment.
These diagrams are continuously updated in real-time according to the operational signal event
map.

Step 6: Defining Program: Defining the Program marks the final phase of the controller
programming process, offering signal professionals the chance to establish a self-contained
source of traffic signal control. This entails creating a cyclic fixed-time control program based on
a signal events map and, if necessary, integrating adaptive algorithms to transform the fixed-time

control into a traffic-dependent one.

Step 7: Emulating the Controller’s Performance: EBC DUMKA_E programming tools can also
emulate the operation of the programmed controller (with the aid of a built-in EBC DUMKA_E
virtual controller). The emulation is helpful for the following purposes: verifying operating, fine­

tuning operations of the controller, and debugging the adaptive algorithm (if needed) before
implementing it.

17

Event-Based Controller DUMKA_E Manual Chapter Three - Inside DUMKA_E

What part of signal map is considered?
What are the required actions?
When the change should be applied?

5- User-Defined Algorithm
Using signal events map (from step 3)
to develop the modification algorithm
for Operational Signal Diagram:

e*

4- Detectors & Logical Sensors
• After collecting data from detectors,

a signal professional should define
the logical sensors’ type(s) for
analyzing and processing the
detector’s raw data.

Sone poos CerActs

typ» 19» »nt yd

Visual Showcase: Screenshot from DUMKAE Software, for Display Purposes Only

WM)■

Я]

U

6- Defining Program
Defining a basic signal timing
diagram based on the signal map
Defining signal control plans for
the intended control level
Modifying operations of non-fixed
time control

Purposes of the emulation:
• Fine tuning the controller’s operation
• Controlling the detectors
• Tracing and debugging the algorithm(s)

7- Emulation

2- Conflicting Signal Groups

• Identifying the conflicting signal
groups

• Identifying the intergreen time

I- Defining Signal Groups

Intersection topology (e.g-, road
user type, geometrical
directions· approaches, turn
movements)
Signal timing data (e.g., signal
changing times, right of way
minimum green)

3- Signal Events Map

Developing signal diagram relies
on building a signal events map.
A signal events map is a
chronological set of signal events.

X 23
I 5

2« 26

JO

<6 «
I > ■

Μ

(4 CT.1xo 5

[1]

(4 (Г.М. s

Interface Elements in DUMKA_E Signal Event Maps, Fundamental Element for Events Map Algorithm in DUMKA_E Emulation and Debugging in DUMKA_E

Figure 6. DUMKA_E Interface and Section

18

Event-Based Controller DUMKA_E Manual Chapter Three - Inside DUMKA_E

3.2. Main Window
The main window has 8 tabs, as shown in the illustration above and described in more detail in
the Table 2. Sub-tabs are described later in each chapter.

Table 2. Main Tabs Summaries

Main Menu Summary

Signal groups

Access to a submenu to define manageable signal groups providing
information on road user type, signal group number, entrance approach,
geometrical directions group, traffic lights group, signal scheme, and base
timing. Refer to Chapter 4 for instructions.

Conflicts
Access to two submenus; conflict matrix and "intergreen" times table to
define any movement conflicts. Refer to Chapter 5 for instructions.

Stages
Not available in this version of the software. General information in
Chapter 6.

Detectors and
Logical Sensors

Access to a submenu to provide information on detectors’ kinds, locations,
data sources, and other parameters that cover all aspects of detectors.
Refer to Chapter 7 for instructions.

Events Maps
Access to two submenus; Events Map and Operative map editing algorithm
to unlock the full potential of the signal events-based control methodology
framework. Refer to Chapter 8 for instructions.

Operative Map
Editing

Algorithms

Access to two submenus; events map and operative map editing algorithms
which enables the flexibility to develop the signal control logics within
“signal event map editor”, “algorithm flow-chart editor”, and “edition
editor”. Refer to Chapter 9 for instructions.

Programs

Access to four submenus; Basic programs bank which provides information
on the specifications required for the program's basic diagram, start-
up/finish logic, and adaptation algorithm, if needed, and Hourly
metaprograms bank, Daily metaprograms bank, and Yearly metaprograms
bank. Refer to Chapter 10 for instructions.

Emulation
Access to various functions to provide fine-tuning operations of the
controller, observing detection status, and tracing and debugging the
algorithm(s). Refer to Chapter 11 for instructions.

19

Event-Based Controller DUMKA_E Manual Chapter Four - Signal Groups

4. Signal Groups
A user must provide both qualitative and quantitative data (e.g. topology of the intersection and
basic signal timing data) to define accurate signal groups in EBC DUMKA_E.

Qualitative data includes the type of road user for the signal group (vehicle or pedestrian), the
controlled directions groups (such as geometrical directions/approaches, turn movements, etc.),
and the signal scheme (refer to Appendix B for more information on this concept) to be used for
the desired control. Figure 7 shows the signal groups overview in EBC DUMKA_E.

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Qualitative Data
Figure 7. Signal Groups Overview

• Signal group road user type (vehicle or pedestrian)

• Signal group-controlled directions
o Controlled entry
o Corresponding geometrical directions group
o Traffic lights group (unique within the controlled entry)

• Signal scheme

Quantitative data includes the transitional control signals' duration times, giving the right-of-way
primary control signals’ minimum time, and motion forbidding primary control signals’ minimum
time (minimum amount of time that a traffic signal must remain red (or display a “motion
forbidding” signal, such as a solid red light or a red arrow) before it can switch to a green or yellow
signal to allow traffic to proceed. This minimum time is typically to prevent drivers and
pedestrians from perceiving the traffic signal control as malfunctioning, thereby avoiding the
likelihood of them ignoring it. These values are necessary for determining the timing of the signals

within the signal group.

Quantitative Data

• Transitional control signals’ duration times.

• Right-of-way primary control signals’ minimum time.

• Motion forbidding primary control signals’ minimum time.

20

Event-Based Controller DUMKA_E Manual Chapter Four - Signal Groups

Table 3 provides an example of how to define qualitative and quantitative data for a situation
similar to that shown in Figure 8. By providing both qualitative and quantitative data, a user can
specify a signal group that meets the necessary criteria for proper traffic control within EBC.

Table 3. Corresponding Qualitative Data for Figure 8

Road User
Type

Signal
Group #

Controlled Directions Group
Traffic Lights

Group
Signal

SchemeControlled
Entry

Geometrical
Directions Group

v 1
A ф [1]

[T.1.x]o
C ф [1]

v 2 C ^ [1] [T.1.e]A

v 3 A ^ [1] [T.1.e]A

v 4 A e [2] [T.2.x]o

v 5
B фф [1]

[T.1.x]o
D ФФФ [1]

p 6 c $ [1] [p]o

21

Event-Based Controller DUMKA_E Manual Chapter Four - Signal Groups

Controlled Directions Group

Controlled Entry7

1 2

Figure 8. Exemplary Intersection to Define Signal Groups

3 1 4

Signal Group

[1] I ООО

Graphical User Interface - Signal Groups

This section provides instructions on how to specify Signal Groups for a traffic signal control
system in EBC DUMKA_E. The signal groups tab is used to create and manage signal groups with
detailed specifications, including road user type, signal group number, controlled entry,
geometrical directions group, traffic lights group, signal scheme, and more. Users can add, edit,
or remove signal groups and controlled direction groups, and perform undo/redo operations.
The section also includes “Remarks” which contains helpful notes and recommendations for

identification and graphical representation of intersection signal group topology.

22

Event-Based Controller DUMKA_E Manual Chapter Four - Signal Groups

STEP 1: Go to the “Signal groups” tab. Figure 9 illustrates step 1 of defining signal groups.

Figure 9. Defining Signal Groups - STEP 1

ile Edit Helf

type sg # ent gdg tig sig.schm ming mins Topology

! а1

□S3 Example 1,dmk - DUMKA_E_ v1.8.0 [Proof of concept]

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

The “Signal groups” tab contains a table for specifying signal groups. The table has columns for
the type of road user (type), signal group number (sg #), controlled entry (ent), geometrical
directions group (gdg), traffic lights group (tlg), signal scheme (sig.schm), minimum time for the
primary signal to give right of way (ming), minimum time for the primary signal to forbid motion
(mins), and the remaining space in the table for defining the duration times for transitional
signals.

23

Event-Based Controller DUMKA_E Manual Chapter Four - Signal Groups

STEP 2: To add a new signal group to the table, click on the "+" button (highlighted in Figure 10).
This will create an empty row that can be filled with the corresponding data for the signal group.

File Edit Help

□E Example 1,dmk - DUMKA_E_ νΙ.β,Ο [Proof of concept]

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

type sg # ent gdg tig sig.schm ming mins Topology
Append signal group

Z—

Figure 10. Defining Signal Groups - STEP 2

24

Event-Based Controller DUMKA_E Manual Chapter Four - Signal Groups

STEP 3: To define the signal group data, specify the type of user (v for vehicles and p for
pedestrians) in the field “type” of the relevant table (shown in Figure 11). To edit an entry,
double-click on a cell . When finished, click outside of the cell(s) you were editing while remaining
inside the table area. To cancel an edit, press the “Esc” key.

Topology

Figure 11. Defining Signal Groups - STEP 3

25

Event-Based Controller DUMKA_E Manual Chapter Four - Signal Groups

If multiple signal groups share a controlled entry (intersection approach zone), they should not
have the same geometrical directions to control.

Remark 1: It is recommended to use the following coding (shown in Figure 12), based on
location description, to identify controlled entry (intersection approach zone):

• For the road approach entry, use a Latin letter (capital for vehicle and small for
pedestrian approach) in the code.

• For the road approach forward carriageway entry, use an upper index (carriageway
index) in the code.

• For the road approach backward carriageway entry, use a lower index (carriageway
index) in the code.

• For the sub intersection, use a left upper index as a Latin number in the code. This
enables automatic graphical representation of the intersection signal group topology
(accessible via the “Topology” hyperlink).

Figure 12. Signal Groups - Defining Intersection Approach Zone

type sg # ent gdg tig type sg # ent gdg tig

V 1 A Λ [1] P 1 а [U
те w v

В C D E F а Ь ç d e f

G H I J К L Q h i í к Į

Μ N 0 P Q R m n θ E α r

Ξ T U V W X Ξ ț LJ V w K

Ύ z ï z

ł1 вз ■3 • = ei •3 ·1 e5 • =

•1 •з •з *4 *5 * = •1 •з •з ·« •s ·=

τ· n • ш « IV · τ· π • Ш t IV e

Ä *

26

Event-Based Controller DUMKA_E Manual Chapter Four - Signal Groups

If the entered data is consistent, the signal group will be treated as “implementable" and shown
in usual colors. Otherwise, it will be treated as “non-implementable" and represented in gray
colors.

The automatic graphical representation of the intersection shown in Figure 8 is presented in
Figure 13 below retrieve from the Topology hyperlink in the Signal groups tab.

Topology

Figure 13. Graphical Representation of Intersection in Topology

Remark 2: The unwanted transitional signals, such as “flashing green" (shown in Figure 14)
can be silenced by setting their time to 0. Some transitional signals may not be useful or
necessary for every intersection or in every country as their use varies by rules and locations.

mins

Figure 14. Defining the Unwanted Transitional Signals

27

Event-Based Controller DUMKA_E Manual Chapter Four - Signal Groups

the signal group and click the “/+” button (highlighted in Figure 15).
STEP 4: To add a second controlled direction group to the signal group, simply select any field of

Figure 15. Defining Signal Groups - Adding Another Controlled Direction Group

[T.1.x)

Add controlled directions group

Topology

Edit...

type sg# ent gdg tig sig.schm ming mins

[1]
[г. 1.4

[1]

To remove the last signal group in the table, click the “-” button.

To remove the last controlled direction of a signal group, select any field in the corresponding
signal group and press the “/-” button.

Remark 3: It is important to note that once a signal group is added to the table, it cannot be
removed from the beginning or the middle of the table. The only way to remove a signal group
is by removing the last one in the table using the “-” button or by clearing the entire table.
Therefore, it is recommended to plan the order of the signal groups carefully before adding
them to the table.

To undo or redo an operation, navigate to the main menu, click on “Edit”, and select “Undo” or
“Redo”.

This section presented a comprehensive guide on defining signal groups in the EBC DUMKA_E
software. The step-by-step process accompanied noteworthy points to help users effectively
create and organize signal groups.

28

Event-Based Controller DUMKA_E Manual Chapter Five - Conflicts

5. Conflicts
This chapter in the EBC DUMKA_E Manual discusses defining conflicts. In the framework, two
signal groups are considered to have no movement conflicts if all combinations of their signals
are consistent from a safety perspective. If the combinations of signals are inconsistent, they are
considered to have movement conflicts.

In the EBC DUMKA_E manual, conflicts between signal groups are specified by providing two key

pieces of information. The first is identifying which combination of signals giving right of way is
inconsistent, meaning that the signals could potentially conflict with each other from a safety
perspective. The second is determining the "intergreen" times, which is the minimum allowable
period of time between the end of the right of way for one signal group and the start of the right
of way for the conflicting signal group. By specifying this information, the system can ensure that
traffic flow is properly managed and safety risks are minimized.

Graphical User Interface - Conflicts

This section provides information on how to define conflicts through a graphical interface in EBC
DUMKA_E. The Conflicts tab consists of two sub-tabs, “Conflict Matrix” and “Intergreen times

table.” This section outlines the step-by-step process for defining conflicts and provides
important notes and remarks for users’ consideration.

To define the Conflicts, follow the steps below:

STEP 1: Go to the “Conflicts” tab (see Figure 16).

The Conflict Matrix is located on the first sub-tab on the left in the Conflicts tab in EBC DUMKA_E.
It is a graphical representation of conflicts between different signal groups. The Conflict Matrix
provides a visual representation of the conflicts between different signal groups, making it easier
to identify potential conflicts and plan appropriate intergreen times.

29

Event-Based Controller DUMKA_E Manual Chapter Five - Conflicts

Figure 16. Defining Conflicts - Overview

File Edit Help

Common Signal groups Conflicts Steiges Sensor -analysers Working with events maps Programs Emulation

STEP 2: To fill in the conflict data in the matrix cells, use the special conflict selector provided in
the graphical user interface. Conflict matrix is shown in Figure 17.

- DUMKA_E.

Conflicts Emulation

Conflicts times table

Figure 17. Defining Conflicts - Conflicts Matrix

This conflict matrix corresponds to the signal groups in the system. To indicate a conflict, simply
select the corresponding cell in the matrix and enter the necessary conflict data. It is important
to accurately identify the conflicting signal groups and provide the appropriate intergreen times
to ensure the safe and efficient operation of the system.

The signal combinations inconsistency matrix is presented on the right, with each row
representing a signal group with a right-of-way ending and each column representing the one

30

Event-Based Controller DUMKA_E Manual Chapter Five - Conflicts

with a right-of-way starting. To specify conflicts, the corresponding matrix cells need to be filled
with the conflict data, which can be done using the special conflict selector.

For the most common conflict where all signals giving right-of-way are inconsistent except for a

combination like “yellow flashing” - “yellow flashing,” a particular button is provided with an “X”
mark. This button can be pressed to specify that type of conflict promptly.

STEP 3: Proceed to the “Intergreen Times Table” tab, where you will need to input the intergreen

time values in the corresponding table cells. The intergreen time table is shown in Figure 18.

Help

Working with

Example 1.dmk - DUMKA.E. v1.8.0

Figure 18. Defining Conflicts - "Intergreen” Times Table

STEP 4: To undo or redo an operation, navigate to the main menu, click on “Edit”, and select
“Undo” or “Redo”.

In conclusion, the Conflicts chapter in the EBC DUMKA_E manual provided a step-by-step guide
on how to define conflicts through a graphical interface using the Conflict Matrix and Intergreen

Times Table sub-tabs. By specifying the inconsistent signal combinations and intergreen times,
users can ensure safe and efficient signal control for intersections.

31

Event-Based Controller DUMKA_E Manual Chapter Six - Stages

6. Stages
The “Stage” tab is currently unavailable in this version of the DUMKA software. The following
information serves as a general overview and outlines what users can anticipate in future
updates.

A stage represents a specific control state where each signal group is governed by a Primary
Meta-Signal. A stage is defined as a collection of primary meta-signals, where each signal in the

collection corresponds to a specific signal group (see Figure 19 for visual representation).

Blackoutred flash!

User-defined

I Collection of Stages
Hi

Figure 19. Explanation of Stage Concept

The concept of a stage is valuable for establishing a steady (with no transition), long-term
condition for all signal groups simultaneously. For instance, the “all red” stage ensures a
consistent state where all movements are stopped. These types of stages are also referred to as
main stages.

In DUMKA_E, stages are utilized in various scenarios:

1. To deactivate all traffic signals, the predefined “blackout” stage can be activated.

2. To transition from the “blackout” or “yellow flashing” stage, a startup procedure is initiated
before activating a control element (e.g., a program). This procedure involves sequentially
transitioning through the following stages:
“blackout” -> “yellow flashing” -> “all red” -> launching the control element. These
intermediary stages are referred to as meso-stages.

3. To operate within the “blackout” or “yellow flashing” stage, a similar process occurs as in
scenario 2, with the sequence:
“Operational control element” -> “all red” -> “yellow flashing” -> “blackout”.

4. Stage-based traffic control requires constructing a signal diagram by sequentially activating
different main stages interconnected by transitions through the inter-stages.
illustrates the stage-based signal control diagram. This option is not available for users in this

version of DUMKA_E.

 Figure 20

32

Event-Based Controller DUMKA_E Manual Chapter Six - Stages

v 1

main stage 1 main stage 2

v 2

interstage 1-2 interstage 2-1

Figure 20. Example of Stage-based Signal Control Diagram (Cyclic)

33

Event-Based Controller DUMKA_E Manual Chapter Seven - Sensors & Analyzers

7. Primary Sensors (Detectors) and Logical Sensors
Primary sensors (detectors) and logical sensors are essential components for creating the traffic­
dependent control logic in the operation of Event-Based Control (EBC) systems.

Primary Sensor (Detector)

A Primary Sensor is a physical detector that interacts with an object of interest (such as a vehicle
or pedestrian in a predefined zone) to obtain and deliver standard primary data about the
object's characteristics. This data typically includes the presence or absence of the object in the
zone, as well as the duration of the object's presence in the zone.

• Logical Sensor-Analyzer

A Logical Sensor-Analyzer (or simply logical sensor) is a logical entity that processes and
occasionally analyzes data from detectors to generate new post-processed measured values for
use in control logic.
Table 4 shows two important kinds of logical sensors in EBC DUMKA_E that are commonly useful
in building signal control logic.

Table 4. Most Common logical sensors in EBC DUMKA_E

Logical Sensor Kind Version Measured Quantities
Required Parameters

Symbol Meaning ID Meaning

RtwDmd
R.O.W Demand

Sensor v0
Demand

Service Demand
Presence (1:
Present, 0:

Absent)

1- Signal Group
serviced; 2- Continuous
demand flag

Waiting
time

Service Awaiting
Time (seconds)

RtwUsgGpg R.O.W Usage
Gapping Sensor

v0 Gapping

R.O.W Usage
Time Gap
Presence

(1: Gap Presence
Detected, 0: No
Gap Detected)

1-Signal Group
serviced;
2- Initial Period when
gapping is not detected;
3- Gap 0 (initial gap
value to detect);
4- Gap 1 (final gap value
to detect);
5- Time interval where
gap value changes;
6- Gap detection
ratification delay.

Logical sensors are, in general, stateful units that process the primary sensor values to produce
high-level data. Here, “stateful” refers to a system or component that has a memory of prior
events or user interactions and can maintain and track its internal state based on that memory

34

Event-Based Controller DUMKA_E Manual Chapter Seven - Sensors & Analyzers

(that is why they have also “-analyzer” suffix in the full name). This contrasts with a “stateless”
system or component, which does not maintain any memory of prior interactions and operates
solely on the information it receives in the present moment. The logical sensors have several
quantities that have been processed from the primary sensor data. They also have several

parameters that can be fine-tuned for optimal performance. In simple terms, logical sensors take
in the raw detector data and transform it into useful information that can be utilized for decision­
making.

Graphical user interface - Sensors -Analyzers

This section provides information on how to define logical sensor-analyzers through a graphical
interface in EBC DUMKA_E. The Sensors-Analyzers tab offers an empty box that can be populated
with a table containing all the necessary information to define the primary sensors (detectors)
and logical sensor-analyzers. This section outlines the step-by-step process for defining detectors
and logical sensor-analyzers and provides important notes and remarks for user's consideration.

To define the logical sensors, follow the steps below:

STEP 1: Go to the “Sensors-Analyzers” tab (See Figure 21).

' MyExample.dmk - DUMKA_E_ v1.8.1 [Proof of concept]

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Add... Remove.

Figure 21. Defining Sensors and Analyzers - STEP 1

35

Event-Based Controller DUMKA_E Manual Chapter Seven - Sensors & Analyzers

STEP 2: Click on the “Add...” button shown in Figure 22 to open the dialog box for creating a new
Sensors-Analyzers.

D MyExample.dmk - DUMKA_E_ vl.8.1 [Proof of concept]

File Edit Help

■ ’ Add sen sor-an a lyser

RoWDmd vO

Add... Remove...

Ok Cancel

□

Sensor-analyser kind Version Affixment (location) Primary sensor-detectors (data sources)

Common Signal groups Conflicts Stages Sensor -analysers Working with events maps Programs Emulation

Figure 22. Defining Sensors and Analyzers - STEP 2

In the EBC DUMKA_E, the Sensors-Analyzers are identified using a specific format.

As it is shown in Figure 18, to define a Sensors-Analyzer, user needs to provide the following
information:

• The kind of Sensors-Analyzer (i.e. what the sensor-analyzer is measuring)

• The version of the Sensors-Analyzer

• The location of the Sensors-Analyzer within the intersection (i.e. which entry and lane the
detector is on)

• The primary sensors (detector) that the processor is using as a source of data

• The required parameters that are needed for the logical sensor-analyzer (i.e. parameters
of algorithm of detectors data handling)

36

Event-Based Controller DUMKA_E Manual Chapter Seven - Sensors & Analyzers

STEP 3: Select the appropriate configurations for each category for the logical sensor-analyzer
and click on the “Ok” button to confirm.

The newly created logical sensor-analyzer will be added to the logical sensor-analyzer’s table with

the chosen configurations and the default required parameters. The information in the
parameters can be adjusted as shown in Figure 23.

Edit

kind affix- dtc parami param?

kind

RoWVDmd dscr.

Add.

Sensor-analysers Working with events maps Programs EmulationCommon Signal groups Conflicts Stages

Figure 23. Defining Sensors and Analyzers - STEP 3

To remove a logical sensor-analyzer, choose the desired one and click on the “Remove...” button.

To undo or redo an operation, navigate to the main menu, click on “Edit”, and select “Undo” or
“Redo”.

This section provides a comprehensive guide on how to define Sensors-Analyzers using the EBC
DUMKA_E software. The step-by-step process is accompanied by noteworthy points to help users

effectively create and organize the logical sensor-analyzers (essential elements of traffic­
dependent control).

37

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

8. Events Maps
This chapter will explore how to work with the events maps in the signal events-based control
methodology framework. This methodology builds a signal diagram on a signal events map. The
events map serves as a specification of the system's core behavior via signal events and their
relationships. By analyzing the events map, a user can gain insight into how the system functions
and how it can be controlled through event-based mechanisms.

This section will focus on specifying an abstract signal events map, an essential step in building a
signal diagram. This will cover the basics of creating an events map, including defining signal

events and their attributes, specifying event relationships, and organizing the order of the events.
Defining events involves identifying the events that can occur in the system, while specifying
event relationships involves describing how events are related to each other, such as the
conditions under which events can occur or the sequence in which they occur. Figure 24
illustrates the overview of Events Maps.

■ Example 1.dmk - DUMKA_E_ v1.8.1 (Proof of concept] □ X

File Edit Help ____________________________

Common Signal groups Conflicts Stages Sensor-analysers I Working with events maps | Programs Emulation

[Events map | Operative map editing algorithms

В

Figure 24. Events Map Overview

The process of creating a signal events map begins with the specification of an abstract signal

events map. This involves defining the events and their attributes, such as event urgency and
event signal transparency. After defining the abstract signal events map, the next step is to gather
quantitative data specific to the program user is working with (the information about programs
is discussed more in Chapter 10). This data will help to concretize the abstract map and create a
more detailed signal events map.

38

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

After gathering quantitative data specific to the program, the next critical step is to refine the
abstract signal events map to create a more detailed and concrete signal events map. This
process is called “specifying a concrete signal events map”.

Finally, the concrete signal events map is processed and resulted in a signal diagram (Figure 25).

Specification of Abstract Signal Events Map

Program Specific
Signal Events Map Quantitative Data

Specification of Concretized Signal Events Map

Processing

Signal Diagram

Figure 25. Signal Event-Based Control Methodology

Within the signal events-based control methodology framework, only regular signal events maps

are permitted. Regular signal events maps can be presented as repetitions of the same infinite
segment.

In the following, the essential terms and concepts related to events maps are introduced and
defined in detail.

Signal Event: A General Meta-Signal Event (GMSE) is the activation of a general meta-signal. The
activation of a GMSE is considered as an “event occurrence” that causes a traffic signal to change.

In other words, a signal event is an occurrence of a specific signal state defined by the activation
or deactivation of a signal.

Signal Events Graph (Basic General Meta-Signal Events Precedence Graph): Basic General Meta­
Signal Events Precedence Graph is an infinite precedence graph of general meta signal events
that define precedence relations between these events, where the precedence relations specify

the order in which events occur. Figure 26 shows an example of a signal event graph for a T­
intersection.

39

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

Figure 26. Signal Event Graph, T-Intersection Example

Signal Urgency, (General Meta-Signal Event) GMSE Urgency: Urgency is an attribute of GMSE that
specifies how close or far that GMSE should occur relative to the present moment. In the context
of the event-based controller system, urgency refers to the degree to which a signal event needs

to be addressed in a timely manner based on its level of importance.

• Positive Signal Urgency: Positive urgency is an attribute of the GMSE which means
that the GMSE should occur as close to the present moment as possible.

• Negative Signal Urgency: Negative urgency is an attribute of the GMSE which means
that the GMSE should occur as far from the present moment as possible.

GMSE Urgency Weight: GMSE Urgency Weight represents an important factor (e.g., 1-4.) applied
to positive and negative urgencies. Table 5 shows the graphical representation of different
urgency weights.

In the following, the graphical convention is used to represent the GMSE Urgency Weight

associated with a signal event in the event-based controller system. In this convention, positive
urgency is represented graphically by a circular shape, while negative urgency is represented by
a rectangular shape. The size of these shapes is used to convey the urgency weight.

As indicated in the table below, GMSE Urgency Weight is a number assigned to each signal event,
and it represents the degree of urgency for that event. The higher the urgency weight, the greater

the urgency of the event. The urgency weight is used to determine the order (priority) in which
events are arranged on a timeline.

Overall, this convention helps visually differentiate between different types of signal events and
their degree of urgency, which can be useful for users of the event-based controller system.

40

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

Table 5. Urgency Graphical Representation

Urgency Weight (+)4 (+)2 (-)1 (-)3

Graphical
Representation • (?) ■ ■

Signal Transparency: Transparency is an attribute of GMSE that, being set to “transparent signal”,
enables the traffic signal engineer to omit the given signal event indication (e.g., omit green on a

signal indication when traffic is not detected). “Transparent signal” doesn’t change the signals in
the signal diagram when activated. This attribute is particularly important in adaptive control
systems, where the signal diagram may need to be adjusted based on changing traffic conditions.

Graphically, transparent signals are represented by a special texture filling, different from the
standard filling used for other signal events. The special texture filling helps visually differentiate
transparent signals from other signal events. Transparent signal representations are shown in

Figure 27.

Figure 27. Transparent Signal Representations
By default, the transparency attribute is set to “opaque” for all signal events, which means that
they will change the signals in the signal diagram when activated. However, when a signal event
is designated as transparent, it will not change the signals in the signal diagram. A special texture
filling will be used to indicate this attribute. As can be noticed from the representations above,
the transparent signal follows the same logic regarding the signal urgency concept.

Remark 1: In essence, a signal event is conceptualized as comprising multiple layers, each

potentially possessing its distinct signal transparency attribute. To denote these individual
layers, an icon with the layer identifier is appended alongside the event icon itself.

layer id1
Layerwith id and “transparent signal”
Layer with id and “opaque signal”
Layer with id and “transparent signal”

Signal event with resulting “opaque signal”

Conceptual Framework for Layered Representation of Event Signal Transparency

41

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

The transparency attribute of the entire event is determined based on the following rule: if
all layers are set to "transparent," the resulting value will also be "transparent." However, if
at least one layer is set to "opaque," the resulting value will be "opaque." This mechanism
facilitates a "voting procedure" among multiple signal groups to decide whether to make the
event signal transparent.

Abstract Signal Events Map (Enhanced General Meta-Signal Events Precedence Graph): Enhanced
General Meta-Signal Events Precedence Graph is a Basic General Meta-Signal Events Precedence
Graph enhanced with qualitative attributes of GMSEs, specifically urgency and transparency.

Figure 28 is the Abstract Signal Events Map based on Figure 26. The circular signal events
correspond to positive urgency, while rectangular signal events correspond to negative urgency.

Figure 28. Abstract Signal Events Map, T-Intersection Example Figure 26

Event Aftereffect: Event aftereffect is a time duration following a general meta-signal event,
which restricts other general meta-signal events (of the same signal group) from occurring. Two
parameters define the event aftereffect:

o The minimal aftereffect duration: this is the minimum amount of time that must pass

before another signal event of the same signal group can occur.
o The main aftereffect duration: this is the typical (used in typical situations) amount of

time that should pass before another signal event of the same signal group can occur.

Event Temporal Separation: Event Temporal Separation is an interval that represents a minimum
time that needs to elapse between two GMSEs defined by a precedence relation. In other words,

if there is a relationship between two events in the graph, this characteristic defines the minimum
amount of time that must pass before the next occurrence of either event so that the relationship
can be maintained.

Concretized Signal Events Map (Comprehensive General Meta-Signal Events Precedence Graph):
Comprehensive General Meta-Signal Events Precedence Graph is an Enhanced General Meta­
Signal Events Precedence Graph enhanced additionally with quantitative attributes of GMSEs,
specifically Event Aftereffect and Event Temporal Separation.

42

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

Figure 29 is an example of a Comprehensive General Meta-Signal Events Precedence Graph based
on Figure 25. The numbers shown above, in brackets, are the event aftereffects durations and
the number “2” shown in a blue bubble is the event temporal separation.

[5] 10 ||5| 10

v 1
2 2 25| 10 [5] 10 |5| 10

v 2
101 101 10

v 3

Figure 29. Concretized Signal Event Map, T-Intersection Example Figure 26

The following tables show the information regarding the example in Figure 26. Table 6 indicates
the transitional signal timings, and Table 7 provides the intergreen times table for this example.

Table 6. Transitional Signals

v3

v 1

v2

Table 7. Intergreen Times Table

R.O.W Given

R.O.W
Lost

v 1 v2 v3

v 1 5

v2 5

v3 5 5

Figure 30 illustrates the resulted signal diagram built by EBC framework (a visual representation
of the signal events).

0 10

v 2

v 1

20

19

15

30

17

40 50

19

60

'2

I I
9 12 15

12^^· 3 I

___________10/

W^··/ 3

£2 64
V2 4

/32_____________________ 42/
l2^^^H0^B!/ 3

30 32 44 47

2 ·Ϊ2^^· 3

47 49____________________ 59

1Р24^^К0^^·
17

Figure 30. Visual Representation of the Signal Events in Figures 28 & 29

v 3

43

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

It is worth noting that, as can be seen in Figure 30, the duration of the main aftereffect of an
event is not necessarily equal to the signal length. For example, the signal group “v 1” has 12
seconds of signal lengths whereas, the main aftereffect in this signal group lasts for 9 seconds.
The difference between the duration of the signal and its main aftereffect is referred to as the

“Additional Signal Duration ”.

Cyclical Comprehensive General Meta-Signal Events Precedence Graph: Cyclical Comprehensive
General Meta-Signal Events Precedence Graph is a Comprehensive General Meta-Signal Events
Precedence Graph that consists of a repeating segment, which is called a cyclic pattern.

Cyclic Pattern: Cyclic pattern is a repeating segment of Cyclical Comprehensive General Meta­
Signal Events Precedence Graph. The prime cyclic pattern is a cyclic pattern that cannot be
decomposed into a smaller cyclic pattern; otherwise, it is called a compound cyclic pattern.

It is important to highlight that all signal events must be connected to each other through
precedence relations.

Figure 31 illustrates different variations of prime cyclic pattern of the same signal map shown in
Figure . More information relating to the cyclic patterns is available in Appendix C.

[5] 10

v 1

v 2

v 3

2
[5] 10

5| 10

a)

Figure 31. Variants of Prime Cyclic Pattern of the same Signal Map in Figure 26

v 1

v 2

v 3

b)

|5| 10

2
|5| 10

'I 10

Graphical User Interface - Events Map

To effectively utilize the signal events-based control methodology framework, it is crucial to
understand how to define and create the events maps. Events maps serve as the backbone of

the methodology, providing a representation of the signal events that occur in a system. This
section provides a step-by-step guide on how to define events maps by using a graphical
interface. By following this guide, users will be able to create regular events maps that can be
utilized for effective events-based control.

To define the Abstract Events Maps, follow the steps below:

44

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

STEP 1: Go to the “Working with events maps” tab (see Figure 32).

Conflicts Programs

Figure 32. Working with Events Maps Overview

The tab is divided into two sub-tabs: “Events Map” and “Operative Map Editing Algorithms.” The
“Events Map” tab is used for developing desired abstract events maps, while the “Operative Map
Editing Algorithms” tab is designed for working with operative signal maps and editing
algorithms. Chapter Eight only focuses on the first sub-tab, the Events map.

45

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

STEP 2: click on the “Maps Explorer” button located on the left side of the tab to access the signal
events map bank content browser. Figure 33 illustrates the events map bank browser.

- DUMKA

Conflicts

Operative map editing algorithmsmap

Maps bank

maps Programs Emulation

Figure 33. Events Map Bank Content Browser - Maps Explorer Button Location

STEP 3: To create a Map, after selecting the Maps bank folder, right-click on the Maps bank and
open the context menu. Figure 34 illustrates how to create a map from the scratch.

Events map Operative map editing

Maps bank
Add ma

Figure 34. Events Map - Create a Map

46

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

STEP 3: To add a new signal events map to the project events maps bank, click on the “Add map”
action with the left mouse button. The new signal events map will be created and automatically
identified as "M1". Its graphical representation will be displayed in the central area of the page
as the start point. Figure 35 shows the location of the newly created map.

Relations viewView

Natural rapport (support event):

I Edit...

L
И

(·) minimal relations

О ðH relations

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Events map Operative map editing algor thms

Maps bank

Ml

Figure 35. Graphical Representation of the Newly Created Signal Events Map

Remark 2: The graphical representation of the Events Map has been generated automatically
upon creation, as shown below. The Signal events map is identified as "M1<empty>" initially,
and as the first map is created in subsequent steps, the <empty> will disappear.

Natural

Edit Help

- DUMKA_E_ ν1Λ1 [Proof of concept]

47

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

Remark 3: To remove a generated Events Map, first, click on the Map explorer on the left side
of the screen. Then, within the Event maps section of the Events map bank, select the one that
needs to be removed with a left click. Finally, right-click on the selected map (M1 in this
example) and choose "remove map..." from the dropdown menu.

Relations viewView

Natural rapport (support event):

Edit...

® minimal relations

O ðH relations

Events map Operative map editing algorithms

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Maps bank

Ml

STEP 4: To open the signal events map editor, click on the “Edit...” button (see Figure 36).

Edit

Signal events map - M l<empty >

Relations view

Natural rapport (support event):
(·) minimal relations

О ðH relations

Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulaton

Events map Operative map editing algorithms

Figure 36. Access to Editor Section of Event Map

48

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

Figure 37 shows the “map editor” interface which consists of several options:

• The option to complete the relations automatically.
• The button to remove all relations simultaneously.
• The wellness status indicator was represented by a smiley face. The wellness status

indicates whether the event map provided is correct or not.
• The potential empty map for creating the desired signal events.

- DUMKA_E_

Help

Working wil

algorithmsOperative

Relations vk

relations

relations

editor

Postpone

Edit...

Figure 37. Map Editor Interface

The signal events map editor is based on the concept of “Events t-disposition”. The term “Events
t-disposition” refers to the arrangement of signal events on a timeline based on their relative
occurrence order (i.e., which event happened before another event). This arrangement does not
consider the time interval between events.

For an event's t-disposition to be compatible with a given signal event map, the order of event
occurrences in the t-disposition layout must match the corresponding order of event precedence
in the map. In other words, if event A is supposed to happen before event B in the signal event
map, then the events t-disposition must also show that event A occurs before event B on the

49

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

timeline. It should be noted that the t-disposition representation is composed of a set of event
columns that are colored in gray (see the gray column in Figure 37).

STEP 5.1: To add a new event to the t-disposition column, double-click the left mouse button on
the location where the new event should appear. The new event will then be added to that
location. Figure 38 shows the two consecutive steps of adding a new event to the map.

Events map

Events map

Signal events map -MKempty"

Signal events map - MKempty>

■ ■ Ml - map editor

■ M1 - map editor

Operative map editing algorithms

Operative map editing algorithms

Pl Auto-complete of a-relations

PI Auto-complete of a-relations

/ 3

:(CO

Л® [Ok

Ok

Natural rapport (support event):

View

Natural rapport (support event):

Postpone

Postpone Cancel

□

□

Cancel

\ Edit.

Edit...

□

□

Relations view

(·) minimal relations

О a" relations

Relations view

(·) minimal relatons

О al relations

Remove all relations

Ï3 Noname - DUMKA_E_vl.8.1 [Proof of concept]

File Edit Help

■ 1 Noname - DUMKA_E_ vl.8.1 [Proof of concept]

File Edit Help

Remove all relations

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Figure 38. Adding a New Event to the T-Disposition Column

50

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

STEP 5.2: To modify event properties, position the mouse cursor over the event icon that needs
to be edited. This will cause the event toolbar to be displayed directly beneath the event icon.
Figure 39 illustrates the available options for the events. A user can choose the desired event
from the available options.

- DUMKA

Conflicts

map editing

map -

Relations vie

relatons
(support event):

relations

relations

Ok Postpone

Auto-complete of a-relatons

maps Programs

Figure 39. Editing Event Features

Remark 4: To delete an event, left-click on the event to select it, then right-click to open the
context menu and choose the "Remove event" action.

Remove

Remi

Ok CancelPostpone

- map editor

Auto-complete of a-relations

51

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

STEP 5.3: To insert a new column into the t-disposition, place the mouse cursor where you want
the new column to be inserted, either before or after an existing column. The space where the
new column will be inserted will be highlighted (Figure 40).

Signal events map - Ml<empty>

Relations viewView

Natural rapport (support event):

Remove al relations

(·) minimal relations

О ðl relations

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

:((i) Ok Postpone Cancel

Events map Operative map editing algorithms

Figure 40. Adding a New Column to the T-Disposition

To insert a new t-disposition column, double-click the left mouse button on the highlighted area
where you want the new column to appear, either before or after an existing column. This action
will insert a new empty column at the selected location (Figure 41).

52

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

editor

CancelPostpone

Remove all relationsAuto-complete ofa-relations

Figure 41. Adding a New Column to the T-Disposition

Remark 5: Events may conflict with each other in an events map if placed in a certain order,
which can cause errors in the signal events map. For example, if the event map allows for the
green signal to occur before the red signal in a conflicting signal group, it can cause conflicts.
The editor will highlight these potentially conflicting events by using red lines and underlines
while constructing the events map. This will alert users about potential conflicts and allow
them to make appropriate adjustments to prevent errors in the signal.

SI Noname - DUMKA_E_v1.8.1 [Proof of concept] □
File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Events map Operative map editing algorithms

Signal events map - Ml<empty>

View

Natural rapport (support event):

Relations view

О minimal relations

® all relations

□
Remove all relations0 Auto-complete of a-relations

Ï3 M1 - map editor

:(((i) Ok Postpone Cancel

Edit...

53

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

To avoid possible conflicts, it is necessary to add the appropriate precedence relations.

Remark 6: To enable the automatic construction of precedence relations, simply select the
"Auto-complete of α-relation" checkbox above the "map editor" window. When this feature is
enabled, the editor will analyze potential conflicts and attempt to add the minimum necessary
precedence relations to the map to eliminate these conflicts based on the existing t-disposition
and relations automatically.

STEP 5.4: To view the current precedence relations, left click on the event for which you want to
see the relations. The relations will be displayed as arrows near the events (see Figure 42).

Figure 42. Precedence Relations Between Events

Postpone

Remove all relationsAuto-complete of a-relations

54

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

Remark 7: To add a precedence relation manually, follow these steps:

1. Select the event that should be the starting point of the relation by clicking it with the left
mouse button.

2. Move the mouse over the event that should be the endpoint of the relation. Near the
icon, a button with "Relation" stock will appear.

3. Click this button and choose the type of desired relation to add from the available options.
The relation will then be added to the map.

Figure below shows the available options.

editor

Auto-complete of a-relations

Postpone

Remove all relations

Remark 8: The meaning of the relation arrows is explained below:

55

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

The following outlines the criteria that must be satisfied for a constructed map to be considered
valid. Here is a brief explanation of each of the four conditions:

• All events must be associated with signal groups that can be implemented (i.e., the map must
be feasible).

• The map must be 3g-strongly connected, meaning, loosely speaking, there must be a path
from any event in the first cyclic pattern to itself in the third cyclic pattern that includes any
other event from the cyclic pattern.

• The maximal weight urgency of all events on the map must be positive.
• The map must have a universal reference event, which serves as a common reference point

for all other events on the map.

The following outlines the criteria that must be satisfied for a constructed map to be considered
as well-defined. Here is a brief explanation of each of the three conditions:

• The map must be valid, meaning that it must satisfy the criteria outlined in the previous
passage.

• The map must have at least one event associated with each signal group.
• The map must not have any potentially conflicting realization events. In other words, there

should be no events on the map that, when implemented, could potentially conflict with each
other.

It is important to note that only valid maps can be included in the project. Additionally, only well-
defined maps can be used for controller programming.

The EBC DUMKA_E can show the current state of wellness of the signal events map by an “emoji
face” icon next to the “Ok” button. If the map is well-defined, a smile will appear next to the “Ok”
button, and the “Ok” button will be activated. Figure 43 shows that situation.

editor

CancelPostpone

Remove all relationsAuto-complete of a-relations

Figure 43. Wellness Status

56

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

Remark 9: In a case that the events map is not valid or well-defined, the wellness status
changes according to the situation. Figure below shows a situation where the map is not 3g-
strongly connected. More details about the error are available by hovering over the attached
tooltip.

Relations viewView

Remove all relationsPl Auto-complete of a-relations

Edit..

О minimal relations

@ all relations

Events map Operative map editing algorithms

Natural rapport (support event): I'G

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Remark 10: In the situation where none of the events are 3g-connected, the corresponding
events can be found by a dashed box around them.

57

Event-Based Controller DUMKA_E Manual Chapter Eight - Events Maps

Remark 11: Once the constructed map is at least valid, click on the “Ok” button to finish
editing and include the map edition in the project.

Remark 12: The EBC DUMKA_E provides the option to postpone map editing and exit the
editor. Click the “Postpone” button, between “Ok” and “Cancel” for that purpose.

Remark 13: The meaning of the denotations is explained below:

v 1

v 2

v 3

v 4

v 5

v 1

v 2

v 3

v 4

v 5

To perform undo or redo on the latest operation, navigate to the main menu, click on “Edit”, and
select “Undo” or “Redo”.

To summarize, this chapter has covered how to work with events maps in the signal events-based
control methodology framework. By analyzing the events map, users can gain insight into how
the system functions and how it can be controlled through event-based mechanisms. The section
focused on specifying an abstract signal events map, an essential step in building a signal diagram.

This included creating an events map by defining events and their attributes, specifying event
relationships, and organizing events into hierarchies.

58

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

9. Operative Map Editing Algorithms
This chapter will explain the operative signal diagram, the signal diagram for adaptive signal
control, and how to build them in the EBC DUMKA_E methodology framework. In the context of
signal events-based control methodology, adaptive control is regarded as the process of building
the signal diagram (the operative signal diagram) in real time for a given transport situation
during the operation of the road traffic controller. This process is referred to as operative
adaptive control. Figure 44 illustrates the steps involved in building the adaptive control strategy
in the framework of the signal events-based control (EBC) concept.

Current Operational Diagram
Correction

Current Transport Situation
Analysis

Basic Signal Diagram as an
Operative One Installation

Figure 44. Scheme of Adaptive Control Process

1- Basic Signal Diagram as an Operative One Installation

This is the first step in the process of adaptive control. The basic signal diagram is a diagram that
shows the basic layout of the traffic signals in each area. It is used as a starting point for the

adaptation process.

2- Current Transport Situation Analysis

The next step is to analyze the current traffic situation. This is done by using sensors (detectors)
data. The goal of this step is to identify the current situation with the traffic flow.

3- Current Operational Diagram Correction

The final step is to make the necessary changes to the basic signal diagram. This is done by using
the information from the current transport situation analysis. This step aims to create a new
operative signal diagram that is optimal for the current traffic situation.

As is shown in Figure 44, steps two and three are parts of a continuous cycle of analyzing the
current situation and reflecting on the changes to make corrections.

The operative signal diagram is built from the operative editable events map. The operative signal
diagram consists of two parts: i) the “past” part and ii) the “planned” part. The past part consists
of the events that have already occurred. The planned part consists of the events that are
planned to occur in the future. In the following, some of the important concepts are explained in
detail:

59

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

Occurred Event: The occurred event is an event that has already occurred.

Actual Event: The most recent signal event that has occurred (It should be noted that every signal
group has its own actual signal event).

Planned Event: A planned signal event is a signal event whose execution time is planned but may
change (e.g. based on relevant logic).

Pre-Occurred Event: The pre-occurred event is a planned event that is to occur in a second.

Signal Horizon: Signal horizon is an operative signal diagram one-second fragment specifying the
control signals to be exhibited to the road users for the coming second.

Figure 45 depicts the past part, the signal horizon, and the planned part in an operative signal
events map.

Planned PartPast Part Signal Horizon

v 2

v 3

v 1

0 10

15

20 30

17

40 50 60

IIIIIIEJIIII· ni
I

' Ví

62 64

19^^^^^·^Τ2^·^·10

27 30
Im ■ Łz«

30 32
F24

___ 44 47

ĮZ^·^ 3

42/' 45_______________________

3 ^■^^■țȚ^^^^^^v?
47 .49 59 62

3 I

Figure 45. Operative Signal Events Map
This section of the EBC DUMKA_E operative signal events map provides an editable signal events

map that allows for modifying events, such as moving events around or adding or removing time
from events. This type of map is useful for defining modifications of the operative signal diagram.

Event Left Displaceability: The left displaceability is responsible for whether, at signal diagram
rebuilding, the occurrence time of the event may become less than it was before rebuilding.
Additional Signal Time Absorbability: The event additional signal time absorbability says

whether additional signal time (signal time exceeded the event main aftereffect duration) will be
included in the event main aftereffect duration after "reconfiguration".

The attributes of an event are represented by icons that accompany the event icon. The icons are
as follows:

60

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

• A triangle placed on the left of the event icon indicates that the displaceability attribute has
the value “not displaceable to the left.” This means the event cannot be moved to the left on the
timeline.

• A “v”-shaped line placed on the right of the event icon indicates that the absorbability
attribute has the value “absorbable.” This means that the event can absorb additional signal time
after it has been reconfigured.

Remark 1: The absence of an icon indicates that the attribute has the default value. For
example, the absence of a triangle on the left of the event icon indicates that the
displaceability attribute has the default value of “displaceable to the left.”

Remark 2: The icons are used to provide a visual representation of the attributes of an event.
This can be helpful when planning and managing events, as it allows users to quickly see the
attributes of an event and how they might affect the timing of subsequent events.

The following refers to the process of editing the event map. It explains that changing the primary
and secondary attributes of events is considered a type of “editing action”. A set of these editing
actions are called an “edition,” and the process of performing these actions is called “editing the

event map.”

61

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

The main editing actions are provided in Table 8 below:

Table 8. Main Editing Actions

Action Graphical representation

C
ha

ng
in

g
Q

ua
lit

at
iv

e
At

tri
bu

te
s

Setting the qualitative attribute’s value
Same as the representation
of attribute’s value to be set

C
ha

ng
in

g
Q

ua
nt

ita
tiv

e
At

tri
bu

te
s

1) Decreasing the main aftereffect duration to
minimum aftereffect duration.

A triangle placed on the right
side of the event icon: И

2) Decreasing the main and minimum aftereffect
durations to minimum feasible value.

A double-triangle placed on
the right side of the event

icon: 3

3) Decrementing (decreasing by 1) the main
aftereffect duration while considering the

minimum aftereffect duration.

A circle attached to a
triangle placed on the right
side of the event icon: ®

4) Decrementing the absorbed portion of the
main aftereffect duration.

A circle attached to a
triangle placed on the

rightest side of the event
icon: B

Combination of 3 and 4.
Double circles are attached

to the double triangles
inside the icon: SÞ

O
th

er
s Completing the finalization of primary event

attributes (urgency and transparency) by marking
them as “protected from further modification.”

Positioning the letter «F» on
the bottom right of the

event icon.

62

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

Remark 3: To represent a partial combination of qualitative attributes editing actions for a
single event, an "asterisk", * , is used in place of the respective aspect of the event's
graphical representation if the action is not included in the combination. Such as:

ft The geometrical form of the event icon as an "asterisk" indicates the absence of the
urgency attribute setting action in the combination.
0 An "asterisk" within the event icon signifies the absence of the transparency attribute
setting action in the combination.
ft An "asterisk" at the secondary qualitative attributes icons places denotes the absence of
these attributes setting actions in the combination.
ft An "asterisk" at the event icon place implies the absence of the qualitative attributes
editing actions.

To differentiate between the graphical representation of an events map and its edition, the
latter utilizes a lilac-colored filling for the event iconic form. For instance:

In the following, there is an example of a comprehensive meta-signal event precedence
graph with its corresponding events map edition representation.

v 3

a) Comprehensive meta-signal event precedence graph

[5] 10 |[5] 10 [5] 10
v 1

2 22 |[5] 10[5] 10;5] IO
v 2

10| 10| 10|

v 3

b) Edition representation of above graph

v 1

v 2

In the framework, map editions are constructed based on a cyclic pattern, specifically referred to
as the “edition cyclic pattern.” This cyclic pattern is known as the t-cyclic pattern, identifying the
feasible event as the starting event. From this starting event, all events within the cyclic pattern
can be encountered solely on directed paths, either in the forward direction (t+ -cyclic pattern)
or in the inverse direction (t- -cyclic pattern). The distinction lies in whether the event holds for
the forward or inverse direction, as illustrated in the figure below. The example below illustrates

63

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

the t-cyclic patterns with possible starting events indicated by the corresponding directed
triangles include (Figure 46):

a) Scenario where both t+ -cyclic and t- -cyclic patterns exist.

b) Scenario where only a t+ -cyclic exists.

Figure 46. T-cyclic Pattern Types

v 1 v

v 2 v 2

v 3 v 3

a) b)

Remark 4: A t-cyclic pattern from which the starting event is excluded and substituted with
its closest similar event in the direction of the cyclic pattern orientation is a punctured t-
cyclic pattern.

To identify the edition cyclic pattern, the following information must be provided:

1. Details about the tie-pole event, which is the starting event of the cyclic pattern in the
operative events map.

2. Information about the orientation of the cyclic pattern (t+ - or t- - cyclic pattern).
3. The count of prime components, particularly if the cyclic pattern is compound.

This information, especially points 1 and 2, is visually represented on the signal map edition

through the tie-pole indicator.

64

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

Table 9. Typical Representation of Editions for a Regular Map

common t-cyclic
pattern

punctured t-cyclic
pattern

tie-pole event

t+

-cyclic pattern

P last occurred event

first planned event

r second planned event

t
-cyclic pattern

last occurred event

first planned event

5 second planned event

It should be noted that the operative map is guaranteed to include only two similar events in
the part of occurred events available for editing.

Additionally, the execution of the edition is discarded if any of the following conditions are met:

• The tie-pole event is not yet in the operative events map (for example, it is at the beginning
of the program).

• It leads to an operative signal events map with an undrivable signal diagram (for example,
due to predicted movement conflicts).

• It contains an editing action for an event that is no longer present in the operational signal
diagram.

• It attempts to modify finalized attributes.

• It attempts to change the event signal transparency attribute from “transparent" to
“ opaque."

• It is manifolded and contains an event signal transparency resetting action.

• It is manifolded and contains actions that decrease main and minimum aftereffect durations
to the minimum feasible value.

Graphical User Interface - Algorithms and Editions

To effectively utilize the signal events-based control methodology framework, it's essential to
understand how to define and create signal events map editing algorithms. This section provides
a step-by-step guide on defining events map algorithms using a graphical and editing algorithms
interface. Following this guide, users can create events maps algorithms suitable for effective
events-based control. The “Operative Map Editing Algorithms" consists of two sub-tabs;

Algorithm flow-chart and Operational map editions. Figure 47 shows the overview of the
“Operative Map Editing Algorithms".

65

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

- DUMKA

Edit
Common

Operative map editing algorithmsEvents map

Operational map editions

Name Functions

Name ie expression

Working with events maps Programs Emulationgroups Conflicts Stages

ample - Actuated

Algorithm - M1/1

Algorithm flow-chart

Figure 47. Overview Working with Events Maps Overview

To define the Events Maps Editing Algorithms, follow the steps below:

STEP 1: Navigate to the “Working with events maps” tab, then click on the “Operative map editing
algorithms” tab (Figure 48).

■ ' Noname- DUMKA_E_ vl.8.1 [Proof of concept]

Events map I Operative map editing algorithms

File Edit Help —

Common Signal groups Conflicts Stages Sensor-analysers I Working with events maps I Programs Emulation

Figure 48. Access to Operative Map Editing Algorithms

66

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

STEP 2: Click on the “Algorithms Explorer” button located on the left side of the page for the
maps editing algorithms banks. This will bring up a list of algorithm banks for the existing signal
events map. Figure 49 illustrates that the signal events map does not have any algorithms related
to it.

Maps editioning algorithms bank M1

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Events map Operative map editing algorithms

Figure 49. Accessing Algorithm Banks for Signal Event Map Editing

To access the desired algorithm, select the corresponding signal events map folder in the opened
explorer window by left clicking with the mouse. Then, right-click the folder to call up the context
menu.

67

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

STEP 3: To add a new algorithm, simply right-click the folder and select “Add algorithm” (Figure
50). This action will create a new empty algorithm in the events map algorithms bank,
automatically identified as '/1'.

Maps ediboning algorithms bank M1

3 1Л
rt»

3 in
O>

Add algoritm

Change ID

Maps ediboning algorithms bank M1

Figure 50. Add a New Algorithm

The graphical representation of the new algorithm will then appear in the central area of the
page (see Figure 51).

Numeric expression

Algorithm -M1/1

Algorithm flow-chart Operational map editions

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Events map Operative map editing algorithms

Figure 51. New Algorithm Representation

68

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

STEP 4: To begin, it is recommended to first create editions of the signal map that will be used in
the algorithms. To do so, a user should switch to the other sub-tab “Operational map editions”.

■ Noname - DUMKA_E_ v1.8.1 [Proof of concept]

File Edit Help

Common Sgnal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Events map Operative map editing algorithms

Algorithm -Μ 1/1

Algorithm flow-chart Operational map editions

Add tabs by pressing "+’

Figure 52. Creating Operational Map Editions for Algorithm Development

STEP 5: Click the “+” button to create a new edition. This will open a dialog for creating a new
edition (shown in Figure 53).

Edition ID:

Edition event:

Edition

Edition raport multiplicity:

Edition initial variant primary

Cancel

Add new editi

Figure 53. Dialog Box for Adding a New Edition

69

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

From the dialog box, select the desired settings and click “Ok”. The newly created edition will be
added to the set of algorithm editions, and a reduced graphical representation of it will open in
the central area of the page (Figure 54).

■ Noname - DUMKA_E_ v1.8.1 [Proof of concept]

File Edit Help

RI Edition - RI

/ 1

/ 2

View

Edit... Remove...

□

UI
n>

Rapport support event: 11G

Algorithm - Μ1/1

Algorithm flow-chart Operational map editions

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Events map Operative map editing algorithms

Figure 54. New Edition for Algorithm Integration

70

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

Remark 3: Click the "Remove..." button in the bottom right corner to remove a displayed
edition.
Remark 4: To edit the currently displayed edition, click the "Edit..." button to launch the
edition editor. The following window will appear which provides the capability to modify any
action in the map.

-DUMKA_E_'

Operational

Rapport support ।

Rapport support ।

STEP 6: To modify event editing actions, simply hover over the bottom area of the desired event
icon. This will cause the editing actions selector button to appear (Figure 55).

Edition - RI

View

Rapport support

Cancel

Figure 55. Edition Editor Interface

71

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

After hovering over the bottom area of the event icon, click the editing actions selector button
to choose the desired editing action for the event. Figure 56 shows all the available options that
could be selected for editing the actions.

- DUMKA_E.

Algorithm -

Operational

Edition -

Rapport supportEdition

Edition -

Rapport support

maps Programs Emulationgroups Conflicts

Figure 56. Selecting an Editing Action for an Event: Using the Editing Actions Button

STEP 7: To save any changes made and exit from the editor, simply click on the “Ok” button.

Once all required editions have been created, navigate to the “Algorithm Flow-chart” tab to
continue with the map editing algorithm.

Figure 57 illustrates the Algorithm Flow-chart tab which consists of Declaration Table (1) and a
window representing the algorithm flowchart (2).

The algorithm flowchart is equipped with the “Edit...” option which provides access to Algorithm
flow-chart editor window. The “Edit.” button is in the bottom right corner of this page.

72

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

□ x

Algorithm ■ Μ1/1

Algorithm flow-chart Operational map editions

■ Noname - DUMKA_E_ v1.8.1 [Proof of concept]

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Events map Operative map editing algorithms

Name

Name

Name

Numeric expression

Logical expression

Functions

Edit...

Figure 57. Algorithm Flow-Chart Tab Overview

The table of declarations provides the option to declare names and expressions, including
functional, numerical, and logical expressions, which can be referenced later by name. This
feature is optional but useful for using named expressions in the algorithm flowchart
specification. Follow the steps outlined below to utilize a named expression in the algorithm
flowchart.

73

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

STEP 8: To create a new named expression, hover the mouse cursor over the empty record in the
table of declarations (within the relevant section, e.g., Functions, Numeric expression, or Logical
expression, Figure 58) and double-click the left mouse button. This action will trigger the named
expression creator (Figure 59).

Figure 58. Declaration Table Overview

Name

Name

Name

Numeric expression

Logical expression

Functions

Figure 59. Expression Creator

74

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

STEP 9: Choose a suitable name for the expression from the available options in the dropdown
menu.

STEP 10: To select a sub-expression for editing, click on the corresponding sub-expression

interactive strip (specified by red in Figure 60).

Figure 60. Access to Editing the Sub-Expression through Interactive Strip

Once a user clicks on the sub-expression interactive strip (specified by red in Figure 61), the

available sub-expression patterns for the given kind will appear. The available options in each
expression (Functions, Numerical, and Logical) differ from each other. The available sub­
expression patterns are shown in Figure 58 for the Functions (F) and Logical expression (L).

75

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

SigLength [RoWUsgGpg

gapping RoWUsgGpg

Abs [

Expression

IsHzA [c

IsHzABsds [aAND

XOR

IsPlanned [

IsAlgActivationTimepoint [

Figure 61. Available Sub-Expression Patterns

76

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

STEP 11: Click on the button of the desired pattern to replace the selected sub-expression. For
instance, click on the button of the “□ + □” pattern (Figure 62).

Expression

SigLengthRoWUsgGpg

RlzTimeRoWUsgGpg

Max[=

Mr[□

= ' 100%

Figure 62. Creating Desired Pattern

Remark 5: To edit the next sub-expression, click on its interactive strip using the left mouse
button, and repeat the previous actions. For example, select the expression of the right
summand.

Remark 6: With a similar approach, users can create the desired sub-expression using the
available patterns.

The list of the patterns available in three different expressions are provided in the following
corresponding with their meanings within each expression.

77

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

Create Functions

The available options within the “Functions” are provided in Figure 63.

SigLength [RoWUsgGpg

RlzTime [RoWUsgGpggapping

Sqr [□

Abs [:

Max

Portion [c , 1QQ%

Figure 63. Functions and Numerical Expressions

(1) Expression for choosing the Logical Sensor (Processor) type through its identifier.

(2) Expression for choosing the secondary quantity of the Logical Sensor (Processor).
(3) Expression for accessing a desired number selection.
(4) Contextual (considered in an edition executed context) numeric expression [shouldn’t be

used in a named expression]

(5- 13) Expression for mathematical operations and functions can be formed by using the
corresponding symbols and functions.

(14) Signal length

(15) Event occurrence time
(16) Minimum Aftereffect
(17) Main Aftereffect
(18) Original Aftereffect (original/initial aftereffect from program table)
(19) Number of parameters of user defined function

Create Numeric Expression(s)

The options within the “Numeric Expressions” are similar to the options in “Functions”, except
that option number 19 (number of parameters) does not exist.

Create Logical Expression(s)

The available options within the “Logical Expressions” are provided in the following figure (Figure
64).

78

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

= AUD 3

IsActual (XOR =

IsAJgArtvabonTimepotnt []

Figure 64. Logical Expressions

(1-4) Logical operators or logical connectives.

(5) Contextual (considered in an edition executed context) numeric expression [shouldn’t be

used in a named expression].

(6-11) Comparison operators

(12-13) Conditional expression for inclusion/non-inclusion in the closed interval [a, b] determines
if a given value falls within the inclusive range defined by the closed interval from a to b.

(14) A predicate with an edition as an argument. Returns True if executing the edition would

alter the operative signal horizon.
(15) Similar to (14), but changes in the signal group provided as the second argument will not

be considered.

(16-19) Check if the event belongs to the specified class.

STEP 12: After adding any of the desired expressions, click the “Ok” button to add the current
named expression to the table and close the expression creator.

Remark 7: To delete a declared named expression, click on the corresponding expression
record in the table, right-click to open the context menu, and choose the "Remove..." action.

79

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

STEP 13: Click the “Edit...” button to open the Algorithm Flow-chart editor (see Figure 65).

ЙЗ Example_1 .dmk - DUMKA_E_ v1.8.1 [Proof of concept]

File Edit Help

Algorithm - Μ1/1

S3 Algorithm flow-chart editor

Ok

□

Cancel

Edit...

□

л
D

ū
s

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Events map Operative map editing algorithms

Figure 65. Algorithm Flow-Chart Editor

In the central area of the editor, the control flow source is represented by a black circle.

80

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

STEP 14: To add a new flow-chart branch, position the mouse cursor over an interactive “block­
progenitor” strip (Figure 66 -1).

Figure 66. Flow Chart Creating Process

Double-click the left mouse button over the interactive “block-progenitor” strip to add a new
minimal branch (Figure 66 -2). Here, the rectangle represents the edition execution block (with
an undefined edition by default).

To insert a condition block into the branch, hover over an interactive “block-progenitor” strip
located on the link and double-click the left mouse button. This will insert a new condition block
with an undefined condition by default (Figure 66 -3 and 4).

81

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

Remark 8: To create a condition block that operates as follows:

yes
* Condition

no

Add an alternative branch, position the mouse cursor over the interactive "block-progenitor"
strip located below the condition block similar to below:

Remark 9: To delete a block, hover over the block and right-click with the mouse. Then, select
the "Remove the block" action from the context menu.

Remark 10: To modify a condition block expression, hover over the block and double-click
the left mouse button. The expression editor, similar to the one in the expression creator
(e.g., Functions, Numeric Expressions, and Logical Expressions), will appear. Utilize it to adjust
the expression, such as setting specific conditions.

Remark 11: To modify an edition block expression, hover over the block and double-click the
left mouse button. The expression editor will appear, resembling the expression creator (as
seen earlier), featuring the following layout:

82

Event-Based Controller DUMKA_E Manual Chapter Nine - Algorithms

■ Expression editor

Ri

□
Rinnovi the block

Copy expression

Past expression

Sit as a single entry block

Set is a doubled entry block

Utilize the expression editor to craft a suitable expression.
Once the algorithm flow-chart is created, click the "Ok" button to save it in the project
and close the algorithm flow-chart editor.

(1) Single edition.
(2) Manifolded edition.
(3) Single edition composition.
(4) Manifolded edition composition.

Remark 12: Each initial block in every branch of the block flowchart can be labeled as a
"single/double entry" block. A "double entry" block signifies that the control flow will
traverse that block (and its branch) twice — once initially, and then again after all other
branches have been traversed. To designate this, simply access the context menu of the
block and select the appropriate opti

Remark 13: For undo and redo operations, navigate to the main menu, select "Edit," and
choose either "Undo" or "Redo."

83

Event-Based Controller DUMKA_E Manual Chapter Ten - Programs

10. Programs
In the context of the EBC, a program is a set of instructions that specifies the logic for controlling
traffic signals. The control logic is structured hierarchically to accommodate various time scales
of control. The program defines the construction logic for the signal diagram based on events
map. At higher levels, meta-programs define the interchanging logic between programs at the
lower level. The program includes specifications for the start-up/finish logic of the signal diagram,
as well as settings for normalization and support event interchange delay. This hierarchy
comprises four levels:

• Level 0 (Basic Level): This level focuses on “seconds” time scale control and is governed by a
specific program. This program outlines the logic for constructing the signal diagram.

• Level 1 (Hourly Level): Operating on the “minutes” time scale, this level is guided by a meta­
program. This meta-program defines the logic for the interchange of programs at Level 0.

• Level 2 (Daily Level): Geared towards “hours” time scale control, this level is shaped by a
meta-program that dictates the logic for interchanging programs at Level 1.

• Level 3 (Yearly Level): Operating on “days” time scale control, this level follows a meta­
program which outlines the logic for interchanging programs at Level 2.

To specify a basic level control program for events-based control, the following is required:

1. Program Basic Diagram Specification:

1.1. Provide a concrete events map as the foundation for constructing the signal

diagram.

2. Program Basic Diagram Start-up/Finish Logic Specification:

2.1. Define the main cyclic pattern of the events map, determining the cutting place

for the operative signal map during operating breaks or new starts.

2.2. Specify normalization settings (e.g., coordination), including:

2.2.1. Define how much time of main aftereffects could be skipped when signal
diagram is normalizing.

2.2.2. Define how long (maximum) the support event could be delayed when
signal diagram is normalizing.

2.2.3. Define a global synchronization point (e.g., offset) for the support event
for coordination.

3. Adaptation Algorithm (if needed): Specify an adaptation algorithm if adaptation is

required.

84

Event-Based Controller DUMKA_E Manual Chapter Ten - Programs

In essence, this framework ensures a structured and well-defined approach to creating a basic
level control program in the events-based control system.

Graphical User Interface - Events-Based Control Program

To define an events-based control program, proceed with the following steps:

STEP 1: Navigate to the “Programs” tab (Figure 67)

Figure 67. Access to Programs

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

STEP 2: Next, navigate to the “Programs Explorer” located on the left side of the page. Click on it
to open the programs bank content browser (Figure 68).

Basic programs bank

Hourly metaprograms bank

Daily metaprograms bank

Yearly metaprograms bank

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Figure 68. Accessing Programs Bank

STEP 3: In the “Programs Explorer” window, choose the “Basic Programs Bank” folder by clicking
the left mouse button. Afterward, access the context menu by right clicking the mouse. Then,
initiate the creation of a program by clicking the “Add Program...” action with the left mouse
button. This action will prompt the program creation dialog to appear (Figure 69).

85

Event-Based Controller DUMKA_E Manual Chapter Ten - Programs

□

Basic programs bank

Hourly metaprograms bank
Daily metaprograms bank

Yearly metaprograms bank

E Noname - DUMKA_E_v1.8.1 [Proof of concept]

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

n Create program

Program kind

О Is I-stage-based

(·) |e|-events-based

OK

Signal events map: Μ1

Cancel

Figure 69. Add Program Action

STEP 4: If necessary, select the suitable “program kind”, and click the “Ok” button. This will
generate a new default program (automatically identified as |e|, which is “event-based”), and its
representation will be displayed on the page.

Figure 70 illustrates the options within the program.

O Adaptivity

Normalization

Show cycle diagram

□

Trne table Events min diversities table

■ Example_1.dmk - DUMKA_E_ vl.8.1 [Proof of concept]

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Map editing algorithm:

Main aftereffects shortening 5
admissible value:

Support event interchange delay 5
admissible value: *

Events map:

Universal reference event:

Main rapport (support event):

1.G

1.G

Ml

.G

.R

10 .R

_ .G 10О Synchronization

Synchronization point
(support event):

Figure 70. Overview of Programs

If needed, make any necessary modifications as explained in the following steps.

86

Event-Based Controller DUMKA_E Manual Chapter Ten - Programs

STEP 5: To adjust after-effect times, edit the “Time Table”. The sections that are editable are:

i) minimum aftereffect time and ii) main aftereffect time (highlighted in blue in Figure 71).

Events min diversities table

10

Signal Event
Identifier

Figure 71. Time Table Components

10

Main
Aftereffect

Time

Min
Aftereffect

Time

It should be noted that the symbol “-” is used for the 1 second time. To edit the values, double
click on the square and choose the appropriate value (see Figure 72).

Time table

10

Events min diversities table

Figure 72. Edit Time Table Values

87

Event-Based Controller DUMKA_E Manual Chapter Ten - Programs

STEP 6: To adjust events diversity times (Event Temporal Separation), navigate to the “Events min
diversities table” tab and edit the corresponding table same as above (Figure 73).

Events min diversities table

Signal Event
Identifier

Related
Signal
Event

Min time
between
Events

Figure 73. Events Minimum Diversities Components

To view the representation of the basic signal diagram (shown with number “2” in Figure 74),
click the “Show cycle diagram” button (shown with number “1” below).

■ Example_1.dmk - DUMKA_E_ v1.8.1 [Proof of concept]

File Edit Help

Ml

Nor mah za bon

Ū Adaptivity

Map editing algorithm: -

Show cyde diagram

5
«

1

Main aftereffects shortening 5
admissible value: *

Support event interchange delay 5
admissible vabe: ’

Synchronizabon point « .(support event): 2 32

Mam rapport (support event):

2
■ Cycle diagram

0 10

10

16

20 30

32

26 29___ 32
I n

Figure 74. Signal Diagram Representation

To execute “undo/redo” operations, navigate to the main menu, select “Edit,” and choose either
“Undo” or “Redo.”

88

Event-Based Controller DUMKA_E Manual Chapter Eleven - Emulation

11. Emulation
The system incorporates a virtual traffic controller. Upon validation, the current project will be
automatically loaded into the virtual traffic controller, allowing emulation of its operation based
on project settings. Key concepts of the controller include:

Control Unit: A control unit is the driving force behind the controller's operations. Typically, a
distinct control unit is allocated for each control level: basic, hourly (meta), daily (meta), and

yearly (meta) levels. These units follow a hierarchical structure, with each level being
subordinated to the one above it.

Operational Control Element (OCE): The Operational Control Element (OCE) guides the activity of
the control unit. There are various kinds of OCEs, each associated with specific functionalities:

For the basic level unit:

• All-motions forbidding fixed stage meso-routine (“all red” executor).
• All-motions authorizing with caution fixed stage meso-routine (“yellow flashing”

executor).
• Fixed stage routine (executor for a stage from the special stages collection).
• Dynamic stage routine (executor for dynamically designed stages).
• Engineer program (executor for a traffic engineer-designed program).

For the meta-level unit:

• Engineer program (executor for a traffic engineer-designed meta-program).
• Provider routine (executor that provides a specified lower-level control activity without

performing any additional actions).

Leading OCE: The leading OCE, distinct from a provider routine OCE, operates at the highest
control level.

Control unit modes are defined for both basic level and metalevel units, for the basic level unit:

• OCE execution activating mode (lasts until a new OCE management manifestation on the
signal horizon).

• OCE execution normalizing mode (lasts until the transition process caused by OCE
changeover is complete).

• OCE normal execution.
• OCE execution completing mode (lasts until the current OCE finishes).

For the metalevel unit:

• OCE execution normalizing mode (lasts until the transition process caused by OCE
changeover is complete).

• OCE normal execution.
• OCE execution completing mode (lasts until the current OCE finishes).

89

Event-Based Controller DUMKA_E Manual Chapter Eleven - Emulation

The controller can execute the following external commands:

1. Reset: Resets the controller, initiating the “all off” stage executor as the initial OCE.
2. Call leading engineer program: Requests the “engineer program” OCE as the leading OCE.
3. Call leading fixed stage routine: Requests the “fixed stage routine” OCE as the leading OCE.

A request for an OCE includes the following arguments:

• OCE id
• OCE changeover urgency (influencing the urgency of interrupting the current OCE)
• OCE changeover stringency (determining whether to interrupt the current OCE if it is identical

to the requested one).

Graphical User Interface - Emulation

To emulate the functioning of the controller, follow these steps:

STEP 1: Navigate to the “Emulation” tab (Figure 75).

■ Example_1 .dmk - DUMKA_E_ v1.8.1 [Proof of concept]

File Edit Help

v 1

v 2

Anew Tic Detailing, Windows ж

Figure 75. Emulation Tab Overview

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

Command sending... OCE: stgOff

10 2D 30

J_ I_

90

Event-Based Controller DUMKA_E Manual Chapter Eleven - Emulation

STEP 2: To fine-tune the operational representation, click the “Detailing” flat-button and select
or deselect the corresponding items (Figure 76).

- DUMKA.

CommandAnew

Show

30

maps Programs Emulationgroups Conflicts Stages

Figure 76. Representation Details

91

Event-Based Controller DUMKA_E Manual Chapter Eleven - Emulation

STEP 3: To simulate detector inputs, position the mouse cursor on the graphical representation
area, right-click, and select the “Add detector emulation...” action. This will open the detector
emulation dialog (Figure 77).

■ Example_1.dmk - DUMKA_E_ νΙΛΙ (Proof of concept] □
File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Worlong with events maps Programs Emulatori

Anew OŒ: stgOff Detaing. Windows.

20 30

■ Add detector.

Detector:

Add detector emulation...

Add a 11 detectors emulation

Remove detector emulation...

Remove a 11 detectors emulation...

Changeai! generator seeds

Make donned detection event generators

Cancel

Figure 77. Add Detectors to Emulation

Select a detector identifier for emulation and click the “Ok” button. The emulated detector will
be visually represented as a blue rectangle labeled with the detector ID, indicating its tic-state.

v I

v 2

d-2

J___I__ I__ I__ I__ I__ L

3020
_J___ I__ I__ I__ I__ I__ I__ L

10
_J____I__ I__ I__ I__ I__ I__ L

Figure 78. Added Detector Emulation

It should be noted that by default, detector emulation is set to “manually driven,” meaning that
the occurrence of object presence detection events is controlled by user manipulation.

92

Event-Based Controller DUMKA_E Manual Chapter Eleven - Emulation

STEP 4: To manually enable or disable the occurrence of
object presence detection events for a specific second, hover
over the detector tic-state rectangle and double-click the left
mouse button. The appearance or disappearance of a black
point in the rectangle corresponds to the presence or
absence of an object detection event occurrence.

Remark 1: To configure automatic generation of object presence detection events
occurrences, hover over any detector tic-state rectangle, right-click, and select the
"Generating settings..." option from the context menu.

v 1

v 2

d-2

Copy to clipboard events statistics

Generating settings...

Load generating settings from file...

Save generating settings to file...

10 20 30
J_ I_ L

This action will open the detector detection events generator window shown below.

93

Event-Based Controller DUMKA_E Manual Chapter Eleven - Emulation

• The "On" checkbox corresponds to the generator's "on"/"off" state.

• "Intensity" represents the rate of events generation, often interpreted as the arrival rate of
vehicles or pedestrians.

• "Occurrence interval" indicates the rate at which generated events occur, interpreted as the
servicing rate of vehicles or pedestrians.

• "Blocking of formed events occurrence" refers to the signal group number whose forbidding
signal will block the occurrence of generated events, typically associated with the signal

group controlling the approach of road users.

Any changes made to detector editions result in an outcome similar to pressing the "Anew"

button (explained in Remark 3).

Detection events

On

Detection events forming

program

data

importing

Forming mean intensity, [unit/min] :

Formed events queueing

Queueing buffer capacity:

Formed events

Occurrence minimal interval.

’shadow events induction:

Ok Cancel

Blocking of formed events

94

Event-Based Controller DUMKA_E Manual Chapter Eleven - Emulation

Remark 2: Click the "Command sending..." button to access the command sending dialog.
From there, select the desired command, such as "call program," and click "Send to execute."

Command Program Id Urgency Stringency

program

Send Cancel

Control comm

low non stringent

A confirmation message will appear in the information box, indicating the successful
execution of the command.

execute

omman

OK

Send cornman

een executed

95

Event-Based Controller DUMKA_E Manual Chapter Eleven - Emulation

STEP 5: To fast-forward the controller's operating time, use the “Tic” button. Each press of the
button advances the controller time by one second, multiplied by the specified multiplier
(highlighted in red in Figure 79). This action triggers the drawing of the corresponding operative
signal diagram and related details easier and faster.

Figure 79. Fast-forwarding the Emulation Time

Off

100

100

- DUMKA_E_ v1.8.1 [Proof

To clear the drawn diagram and reset the controller, press the “Anew” button (highlighted in red
in Figure 79).

96

Event-Based Controller DUMKA_E Manual Chapter Eleven - Emulation

STEP 6: To trace the OCE events-based program operative signal events map editing algorithm,
click the “Windows” flat-button and enable the “Algorithm tracing window.” The corresponding
tracing window will be displayed. The green color in the tracing window corresponds to the
control flow path, while lilac indicates inexecution, often due to reasons such as the edition being
inexecutable at the given moment.

Anew

d-2

10 20 30

Tic 20

□

Command sending... OCE: stgOff Detailing, Windows.

■ Example_1.dmk - DUMKA_E_v1.8.1 [Proof of concept]

File Edit Help

Common Signal groups Conflicts Stages Sensor-analysers Working with events maps Programs Emulation

R2

Movement topology

Algorithm tracing window

Sensor-analyzers values observing window

Dumb window

RtwOmd<A{1 > I- 0

Figure 80. Algorithm Tracing Window

97

Event-Based Controller DUMKA_E Manual Examples

12. Examples
Example 1: Pedestrian Actuated Control

Pedestrian actuated control is a traffic control system that empowers pedestrians to activate
changes in traffic signals (e.g., primarily through devices such as push buttons). Figure below
shows the simple geometry for showcasing this example:

v 1P 2
v 1------ >

The Signal Event Graph corresponding to the figure above shows the precedence relations
between the signal events in a cyclic pattern as shown in the figure below:

v 1

v 2

Algorithm 1: Delayed start of green signal for pedestrian crossing (p2)

The flow-chart below shows how the algorithm makes the decision, between two rules/editions
(E1 and E2), based on the detected demand of the pedestrian crossing (p2).

El

E2

‘RtwDmd<a> == 0

Editions (E1 and E2) are represented below:

El
v 1

P 2

E2
v 1

P 2

Interpretation: If there is no demand for pedestrian crossing (p2), then execute R1.

• E1 involves decreasing the level of urgency for the red signal event for v1, consequently
delaying it along with all subsequent events.

98

Event-Based Controller DUMKA_E Manual Examples

On the contrary, if there is a demand for pedestrian crossing (p2), then execute R2.

• E2 entails raising the level of urgency for the pedestrian green signal event.

Algorithm 2: Skipped green signal for pedestrian crossing (p2)

EIsHzA[R] ‘RtwDmd<a> == 0

Edition (E) is represented below:

v 1

p 2

Interpretation: If by the decision-making point, the algorithm detects no demand for pedestrian
crossing (p2), executes E.

• E involves skipping the pedestrian service to avoid disrupting the overall coordination
for v1.

99

Event-Based Controller DUMKA_E Manual Examples

Example 2: Vehicle Actuated Control

Vehicle actuated control (semi- or fully-) is a traffic control system designed to respond
dynamically to the presence or absence of vehicles at intersections. Figure below shows the
simple geometry for showcasing this example:

A
v 1

P 3 P 3

M

v 2
BD

v 2

-P-4----

t

V
A

v 1
C

The Signal Event Graph corresponding to the figure above shows the precedence relations
between the signal events in a cyclic pattern as shown in the figure below:

v 1

v 2

P 3

P 4

Algorithm 1: Semi-Actuated (based on gap-out)

EIsActualp-G]2.Gl L

Symbol

L ‘RtwUsgGpg == 1 AND ‘RtwUsgGpg<D> == 1

Logical Condition

100

Event-Based Controller DUMKA_E Manual Examples

Edition (E) is represented below:

v 1

v 2

P 3

P 4

Interpretation: If the current signal indicates that signal group V2 is in the green phase and a gap
is detected, proceed to execute E.

• E involves reducing the planned duration of the green signal for v2 and terminates it (gaps
out).

Algorithm 2: Fully Actuated (based on gap-out)

El

E2

IsActual|[1-Gl1.Gl

IsActual[[2G]2.Gl

L1

L2

Symbol

L1

L2 ‘RtwUsgGpg == 1 AND ‘RtwUsgGpg<D> == 1

‘RtwUsgGpg<A> == 1 AND ‘RtwUsgGpg<C> == 1

Logical condition

101

Event-Based Controller DUMKA_E Manual Examples

Editions (E1 and E2) are represented below:

E1

v 1

v 2

P 3

P 4

E2

v 1

P 3

P 4

v 2

Interpretation: If the current signal indicates that signal group V1 is in the green phase and a gap
is detected in both approaches of intersection (A and C), proceed to execute E1.

• E1 involves reducing the planned duration of the green signal for v1 and terminates it
(gaps out).

If the current signal indicates that signal group V2 is in the green phase and a gap is detected in
both approaches of intersection (B and D), proceed to execute E2.

• E2 involves reducing the planned duration of the green signal for v2 and terminates it
(gaps out).

102

Event-Based Controller DUMKA_E Manual Appendices

Appendix A: Primary and Transitional Control, Vienna Convention

Table 10. Primary Control Signals for Vehicles

Primary Control
Signal Name

Representation
Controlling logical meaning

Graphical Textual

Vehicular

Logically Vehicular
Red Flashing ■ Rf

as in the Vienna Convention for
corresponding traffic lights lighting

Logically Vehicular
Red ■ R

as in the Vienna Convention for
corresponding traffic lights lighting

Logically Vehicular
Common Green ■ G

as in the Vienna Convention for
corresponding traffic lights lighting

Logically Vehicular
Additional Green ■ g —

as in the Vienna Convention for
corresponding traffic lights lighting

Logically Vehicular
Accented Green ■ —

G

as in the extended Vienna
Convention in p. 10 for
corresponding traffic lights lighting

Logically Vehicular
Yellow Flashing 1 Yf

as in the Vienna Convention for
corresponding traffic lights lighting

Logically Vehicular
Absent ■ A

as in the Vienna Convention for
corresponding traffic lights lighting

103

Event-Based Controller DUMKA_E Manual Appendices

Table 11. Primary Control Signals for Pedestrians

Primary Control
Signal Name

Representation
Controlling logical meaning

Graphical

Pedestrian

Logically Pedestrian
Red

as in the Vienna Convention for
corresponding traffic lights lighting

Logically Pedestrian
Green

as in the Vienna Convention for
corresponding traffic lights lighting

Logically Pedestrian
Absent

as in the Vienna Convention for
corresponding traffic lights lighting

Primary Control
Signal Name

Representation
Controlling logical meaning

Graphical Textual

Vehicular

Logically Vehicular
Yellow

as in the Vienna Convention for
corresponding traffic lights lighting

Logically Vehicular
Yellow Alternative

as in the extended Vienna Convention for
corresponding traffic lights lighting

Logically Vehicular Red
and Yellow

as in the Vienna Convention for
corresponding traffic lights lighting

Logically Vehicular
Green Flashing

as in the Vienna Convention for
corresponding traffic lights lighting

104

Event-Based Controller DUMKA_E Manual Appendices

Logically Vehicular
Accented Green

Flashing
■ as in the extended Vienna Convention for

corresponding traffic lights lighting

Logically Vehicular
Additional Green

Flashing
1 as in the extended Vienna Convention for

corresponding traffic lights lighting

Logically Vehicular
Additional Green and

Yellow
■

as in the Vienna Convention for
corresponding traffic lights lighting
(provided a common direction/direction
controlling is)

Logically Vehicular
Additional Green and

Alternative Yellow
1

as in the Vienna Convention for
corresponding traffic lights lighting
(provided a common direction/direction
controlling is)

Logically Vehicular
Additional Green
Flashing and Red

as in the extended Vienna Convention for
corresponding traffic lights lighting
(provided a common direction/direction
controlling is)

Logically Vehicular
Additional Green and

Yellow and Red ■
as in the Vienna Convention for
corresponding traffic lights lighting
(provided a common direction/direction
controlling is)

Logically Vehicular
Additional Green

Flashing and Yellow
and Red

1
as in the extended Vienna Convention for
corresponding traffic lights lighting
(provided a common direction/direction
controlling is)

Logically Vehicular
Accented Additional
Green and Green

Flashing
■

as in the extended Vienna Convention for
corresponding traffic lights lighting
(provided a common direction/direction
controlling is)

Logically Vehicular
Accented Additional
Green Flashing and

Green
■

as in the extended Vienna Convention for
corresponding traffic lights lighting
(provided a common direction/direction
controlling is)

105

Event-Based Controller DUMKA E Manual Appendices

Appendix B: Signal Schemes Examples

Traffic lights system Т

Canonical lights layout

1. Signal scheme [T.1.x]o

1.1 Movement geometrical directions A

Lights form aspects specification.

- any

106

Event-Based Controller DUMKA E Manual Appendices

G
en

er
al

 c
on

tro
l s

ig
na

ls
Implementing

Primary form Transitional forms

Œ k J ¡11 a 1
logically vehicular

red
logically vehicular

yellow
logically vehicular

alternative

logically
vehicular yellow

and red

Ś
к_________ J

logically vehicular
green

logically vehicular
green flashing

fk
\i/

 Ί ж

logically vehicular
yellow flashing

k J

logically vehicular
absent

107

Event-Based Controller DUMKA E Manual Appendices

Transitions specification

to general control signal:

ΓίίIT IT|IT

I zr-^J IT
E B E B E B E B

fro
m

 g
en

er
al

 c
on

tro
l s

ig
na

l:

| Í Ì
к_________ 7 ill

AÀ
к_________ 7

í\l
/ Ί

28

99 111
к 7 Tz

 Ί
JR

I,_
<|J

1 /MJ Ã
A A

AÀ
к J

.1
A

108

Event-Based Controller DUMKA E Manual Appendices

2. Signal scheme [T.2.x]o

2.1 Movement geometrical directions A - any

Lights form aspects specification.

G
en

er
al

 c
on

tro
l s

ig
na

ls

Implementing

Primary form Transitional forms

|>
 1

l^

l

tói
L < J (A

V A A

tói
L < J

logically vehicular
red

logically vehicular
yellow

logically vehicular
alternative

logically
vehicular yellow

and red

ÍTI
___________ /

Al

logically green
accented

logically green
accented flashing

[A

___________ /

109

Event-Based Controller DUMKA E Manual Appendices

Transitions specification

logically vehicular
yellow flashing

('►
 Ί

logically vehicular
absent

to general control signal:

|T|
к____ >

ITI
к____ > к____ J

tani
Į <1

E B E B E B E B

fro
m

 g
en

er
al

 c
on

tro
l s

ig
na

l:

!'►
 'I

I

J W1 I

l < J

Г
►

 Ί

Μ
/

Ί
Į,H

W
!'i

t__
£lj

к____ У ΙΉ >

1 J •i
>

110

Event-Based Controller DUMKA E Manual Appendices

3. Signal scheme [T.x.e]A (exclusive additional)

3.1 Movement geometrical directions A - right-oriented (from 0 to 90 grad)

Lights form aspects specification.

G
en

er
al

 c
on

tro
l s

ig
na

ls

Implementing

Primary form Transitional forms

A 4) >

L_J

logically vehicular
red

logically vehicular
yellow

logically vehicular
alternative

logically
vehicular yellow

and red

logically vehicular
additional green

logically vehicular
additional green

flashing

111

Event-Based Controller DUMKA E Manual Appendices

1
logically vehicular

yellow flashing

E
logically vehicular

absent

Transitions specification

to general control signal:

X X Г►
'l/

Ί
1® X

E B E B B B E B

fro
m

 g
en

er
al

co

nt
ro

l s
ig

na
l: Ł

pSi
I

L
» I JL ^1/

l <u d/
км

112

Event-Based Controller DUMKA E Manual Appendices

Г►
\|

/ Ί Ł
A

z A
A

3.2 Movement geometrical directions^ - left-oriented (> 90 grad)

[similar to 3.1]

113

Event-Based Controller DUMKA E Manual Appendices

4. Signal scheme [T.X.O]A (additional)

4.1 Movement geometrical directions - right-oriented (from 0 to 90 grad)

Lights form aspects specification.

G
en

er
al

 c
on

tro
l s

ig
na

ls

Implementing

Primary form Transitional forms

X Ł Ł.
I <1

logically vehicular
red

logically vehicular
yellow

logically
vehicular

alternative

logically
vehicular yellow

and red

logically vehicular
green

logically vehicular
green flashing

X
ГI

Ł. (Ί

ƒ_3 X

114

Event-Based Controller DUMKA E Manual Appendices

logically vehicular
additional green

logically vehicular
additional green

and yellow

logically
vehicular

additional green
and alternative

yellow

logically
vehicular

additional green
flashing and red

logically
vehicular

additional green
and yellow and

red

logically
vehicular

additional green
flashing and

yellow and red

fi B

!

logically green
accented

logically green
accented flashing

logically
vehicular
accented

additional green
and green
flashing

logically
vehicular
accented

additional green
flashing and

green

A
logically vehicular

yellow flashing

A
logically vehicular

absent

115

Event-Based Controller DUMKA E Manual Appendices

Transitions specification

to general control signal:

л X X Ł X X
E B E B E B B B E B E B

fro
m

 g
en

er
al

 c
on

tro
l s

ig
na

l:

ИL 4)

H
l
Įįp

»| Д
Ł1X X X X X
Ł1 X 3, XH

i—
/I• 1 s

------------ A A k------------- A A

IX1 UA
^^A

116

Event-Based Controller DUMKA E Manual Appendices

4.2 Movement geometrical directions A -left-oriented (> 90 grad)

[similar to 4.1]

117

Event-Based Controller DUMKA E Manual Appendices

Traffic lights system W

Canonical lights layout

1. Signal scheme [W]o

1.1 Movement geometrical directions A - any

Lights form aspects specification.

G
en

er
al

 c
on

tro
l s

ig
na

ls

Implementing

Primary form Transitional forms

1 ·. /
-·- · U ' '

logically vehicular
red flashing

\i/®
 Ί

О

118

Event-Based Controller DUMKA E Manual Appendices

logically vehicular
yellow flashing

r >

•
• ·

1____)

logically vehicular
absent

Transitions specification

to general control signal:

/ Λ
» ·. /

-·- ·
L i ' > ƒ

_
A

•\l
/ o O
/) C л

•
• ·

k____ J

E B E B E B

fro
m

 g
en

er
al

 c
on

tro
l s

ig
na

l:

' Λ
i ·. /-·- ·. 1 z

Г
·\ΐ

/Ί о

(л
•

• · ___ J

119

Event-Based Controller DUMKA E Manual Appendices

Traffic lights system TE

Canonical lights layout

1. Signal scheme [TE.2]o

1.1 Movement geometrical directions A- any

Lights form aspects specification.

120

Event-Based Controller DUMKA E Manual Appendices

Implementing

Primary form Transitional forms

I_______
J

Ž

к__________ 7 <
Λ w

»
L
J

>

Ш
"*

-----------J

G
en

er
al

 c
on

tro
l s

ig
na

ls

logically vehicular
red

logically vehicular
yellow

logically vehicular
alternative

logically
vehicular yellow

and red

l_______7

I

logically green
accented

logically green
accented flashing

ç
xl

/ Ί Iw
l

logically vehicular
yellow flashing

I_______
J

121

Event-Based Controller DUMKA E Manual Appendices

Transitions specification

logically vehicular
absent

to general control signal:

I_______________7

I_______________7

Г
Ί ITI it

I____ 7

E B E B E B E B

fro
m

 g
en

er
al

 c
on

tro
l s

ig
na

l:

U
M

1______________
J

g
I_________ 7

5
4_________ 7

f II
4_________7

f\l
z
Ì

,>
m
l

1___ ľy

' \
1Z

<
Λ

W
M

<

7
>

s
к_________ 7 <

I_______________
J

122

Event-Based Controller DUMKA E Manual Appendices

Traffic lights system p

Canonical lights layout

1. Signal scheme [p]o

1.1 Movement geometrical directions A - any

Lights form aspects specification.

G
en

er
al

 c
on

tro
l s

ig
na

ls

Implementing

Primary form Transitional forms

Í * Ì Ш

Г ч1/
•-=·κ

/I) <
Г_/I

logically pedestrian
red

logically pedestrian
yellow

logically
pedestrian yellow

alternative

m Ш

123

Event-Based Controller DUMKA E Manual Appendices

logically pedestrian
green

m Ш
logically pedestrian

absent

Transitions specification

to general control signal:

m Ш m ш пп ш
E B E B E B

fro
m

 g
en

er
al

 c
on

tro
l s

ig
na

l: f t Ì
Ш
[ł ì
ш

f

I_

Г χΙ/Ί
e==eg

ш lb
í 1 π

A

124

Event-Based Controller DUMKA_E Manual Appendices

Appendix C: Cyclic Patterns
An events map is regular if it can be presented as made of repetitions of the same finite

fragment. The corresponding repeating fragment is a rapport.

A prime rapport - the rapport which cannot be presented as made of repetitions of another
rapport. Otherwise, the rapport is compound.

1?I 10
v 1

2
||5| 10

v 2
10|

a)

1?I 10
v 1

v 2

v 3

b)

2

10|

1?I 10

Prime rapports variants of the same signal map

“Cloned” by prime rapport repetitions events are similar events or “ twins ”-events and form
particular genealogical line. Difference in ordinal numbers of “cloning” of one “twin” relative to
another is similarity index.

genealogical line 1.1 genealogical line 1.2

\ ' similarity index = 1 '

; similarity index = 2 ''

v 1

v 2

v 3

Signal events map is g-strongly connected if there is a directed (by precedence relation) path
between events of every pair of genealogical lines.

Regular g-strongly connected signal events map natural sectioning is its partitioning basing
on the events occurrence grouping in the signal diagram built on the map in situation where
main aftereffect of a chosen series of similar events tends to infinity. The resulting partition
element is natural rapport. The corresponding event (and its “twins”) is (natural) rapport support
event (see fig. below).

125

Event-Based Controller DUMKA_E Manual Appendices

v 1

v 2

v 3

a)

v 3

v 2

v 1

v 1

v 2

v 3

Example of the natural sectioning variants.

The support events is highlighted with yellow.

b)

A regular signal map is 3g-strongly connected if for any pair of genealogical lines there is a
path from event of first genealogical line to similar event with similarity index not greater 3 which
includes an event of second genealogical line.

Signal event is proper if its signal differs from one of a previous event.

Universal reference event of prime rapport is a first in order of signal group numeration event
which fulfill conditions:

1) its signal gives right of way.

2) its occurrence can be directly observed and recognized within prime rapport (i.e. it is a
proper event, and it is unique event with such signal within signal group and rapport);

126

Event-Based Controller DUMKA_E Manual Appendices

In cases where several events fulfill the conditions 1), 2), the event with a signal with lowest
rank to be chosen as the universal:

Table

Meta-Signal rank

logically vehicular accented green 0

logically vehicular common green 1

logically vehicular additional green 2

logically vehicular yellow flashing 3

logically vehicular absent 4

logically pedestrian green 5

logically pedestrian absent 6

Prime rapport event universal identifier includes:

1) event signal group number.

2) event control signal.

and,

3) if the event with the control signal is not unique for the signal group, additionally,

3.1) ordinal number of occurrences of the event (or its “twin”) in a range of proper events
with the given signal on the signal group after (by precedence relation) universal signal event.
(Represented with a left upper index in the form '/' - for 2, '//' - for 3, etc., see figure below);

3.2) ordinal number of occurrences of the event (or its “twin”) with the given signal on
the signal group within continuous series of events with the same signal. (Represented with a
right lower index, '1' - for 2, '2' - for 3, etc.).

.universal reference event

v 1

v 2
/2.R

1.G / 1.R 1.R, I.R2

127

