PAVEMENT AND BRIDGE REHABILITATION USING MATERIAL COMPATIBLE REPAIRS

Max Stephens, Ph.D.

Julie Vandenbossche, Ph.D.

Naser P. Sharifi, Ph.D.

5/13/2019 PITT IRISE CENTER FOR IMPACTFUL RESILIENT INFRASTRUCTURE SCIENCE & ENGINEERING

University of Pittsburgh | Swanson School of Engineering

CURRENT METHODS OF REPAIR

Concrete Pavements

Partial Depth Repair

Dowel Retrofit

Full Depth Repair

Concrete Bridges

Type 1

Type 2

Type 3

University of Pittsburgh | Swanson School of Engineering

CURRENT PRACTICES

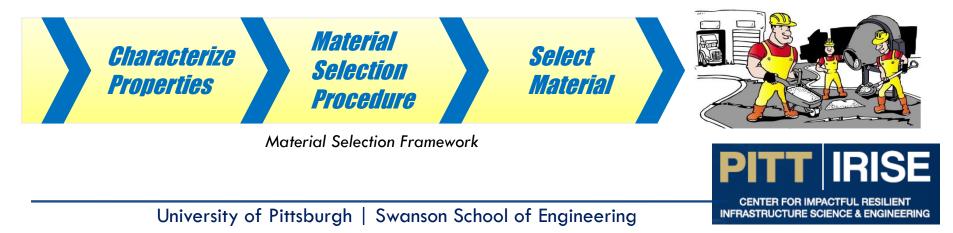
Typical repair materials (Cementitious Materials)

Product	Material	Working	Installation	Time-to-	Moisture	Material	
	Category	Time, min	Temp., °F	Traffic,	Repair	Aggregate	Cost
				hr.	Surface		Factor
Type III PCC	РСС	20	32 to 109	4 to 6	SSD to dry	1-3% to dry	1
Duracal	gypsum-based	20	32 to 109	1.5	SSD to dry	1-3% to dry	0.7
Set-45	magnesium phosphate	10	32 to 90	1.5	dry	1-3% to dry	3.5
Five Star HP	high alumina	20	32 to 90	1.5	SSD to dry	1-3% to dry	3
Pyrament 505	Hydraulic cement	30	32 to 109	2 to 3	SSD to dry	1-3% to dry	2

THE PROBLEM

Deficiencies in Repair Materials [3]:

- Compressive failure of repair material
- Incompatible stiffness
- Incompatible thermal expansion
- Excessive autogenous shrinkage
- Variability in repair material
- Insufficient consolidation
- Delayed curing

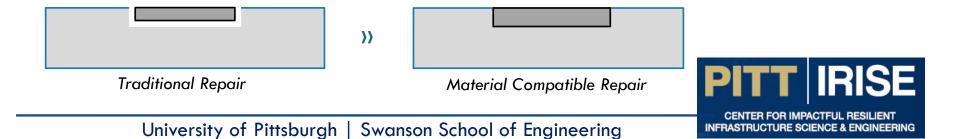


RESEARCH OBJECTIVES

- 1. Identify critical parameters for compatible repair mixture
- 2. Develop repair material selection framework
- 3. Propose new mix designs
- 4. Experimental evaluation of repair materials (developed and

commercially available)

RESEARCH OBJECTIVES


Improved Performance

- 1. Improved strength & reduced ε_{repair} » Internal curing
- 2. Extended durability
- 3. Structure and Repair deform at the same

rate:

- a.) Applied load
- b.) Change in temperature
- c.) Drying shrinkage

- » Elastic modulus, $E_{repair} = E_{existing}$
- » Thermal coefficient, $\alpha_{repair} = \alpha_{existing}$
-)) $\epsilon_{\rm repair}$ reduced

PROGRESS TO DATE

- 1. Performed literature review
- 2. Defined performance criteria
- 3. Identifying key parameters in material selection framework
- 4. Identifying materials for use in repair mixes

University of Pittsburgh | Swanson School of Engineering

Performance Criteria								
Constructability	Easy to perform, Versatile, etc.							
Fresh	Setting Time							
Concrete	Workability (Slump)							
	Flexural and Compressive Strength							
	Fatigue Performance							
Hardened	Stiffness Compatibility							
Concrete	Thermal Compatibility							
	Bonding							
	Shrinkages (Autogenous and Total)							
Concrete	Freeze/Thaw Deterioration							
Durability	Chloride Permeability (Resistivity)							

		Concrete Pavement							
Performance Criteria			Dowel Retrofit	Full Depth					
Constructability	Easy to perform, Versatile, etc.	~	\checkmark	\checkmark					
Fresh	Setting Time	✓	\checkmark	\checkmark					
Concrete	Workability (Slump)	✓	\checkmark	\checkmark					
	Flexural and Compressive Strength	~	\checkmark	~					
	Fatigue Performance	\checkmark	\checkmark	\checkmark					
Hardened	Stiffness Compatibility	✓	\checkmark	×					
Concrete	Thermal Compatibility	\checkmark	\checkmark	×					
	Bonding	\checkmark	\checkmark	×					
	Shrinkages (Autogenous and Total)	\checkmark	\checkmark	×					
Concrete	Freeze/Thaw Deterioration	~	\checkmark	\checkmark					
Durability	Chloride Permeability (Resistivity)	\checkmark	\checkmark	\checkmark					

		Concr	ete Pave	ment	Concrete Bridges					
Performance Criteria		Partial Depth	Dowel Retrofit	Full Depth	Type 1	Туре 2	Туре З			
Constructability	Easy to perform, Versatile, etc.	~	\checkmark	\checkmark	~	\checkmark	\checkmark			
Fresh	Setting Time	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Concrete	Workability (Slump)	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	Flexural and Compressive Strength	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	Fatigue Performance	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Hardened	Stiffness Compatibility	\checkmark	\checkmark	×	\checkmark	\checkmark	×			
Concrete	Thermal Compatibility	\checkmark	\checkmark	×	\checkmark	\checkmark	×			
	Bonding	~	\checkmark	×	\checkmark	\checkmark	×			
	Shrinkages (Autogenous and Total)	\checkmark	\checkmark	×	\checkmark	\checkmark	×			
Concrete	Freeze/Thaw Deterioration	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Durability	Chloride Permeability (Resistivity)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			

1. Fresh Concrete

- Workability
- Set time/high early strength

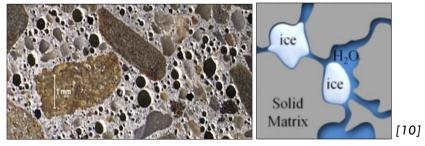
2. Hardened Concrete

- Flexural and compressive strength compatibility
- Stiffness compatibility
- Thermal compatibility
- Shrinkage (autogenous and total)
- Bond
- Fatigue
- •

Workability Tests

Strength Tests

Shrinkage Tests



3. Durability

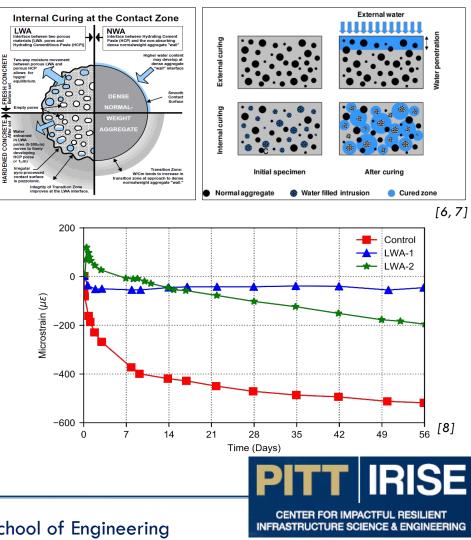
- Freeze/thaw deterioration
- Chloride permeability

4. Constructability

- Simple to implement
- Versatile

Air Voids

Permeability Test



Super Air Meter Test

INTERNAL CURING

- Saturated porous materials release water as needed to promote longer curing times in surrounding cement paste.
- Shrinkage can be significantly reduced.
- Improves bond between repair material and existing concrete.

SCHEDULE

	Year 1					Year 2					
Months	1	2	3	4	5	6	7	8	9	10 11	12
				:	:		÷				:
Task 1: Literature Review				-			:				:
Deliverable 1: Report Summarizing Literature Review				-			-				:
Task 2: Identification of Performance Criteria											
Deliverable 2: Report Summarizing Performance Criteria for Rapid Repair Methodologies							-				
Task 3: Identification and Evaluation of Aggregate Sources											
Deliverable 3: Report Summarizing Possible Aggregate Sources Including Sorption Characteristics			-	-							
Task 4: Development of Material Selection Framework and Testing of Repair Mixes			-	-							:
Deliverable 4: Report Summarizing Concrete Mix Designs and Experimental Results				÷	:						
Deliverable 5: Draft Final Report			-	-			-				
Deliverable 6: Final Report				-			:				

NEXT STEPS

1. Development of materials selection framework

• Characterize in-situ PCC properties

2. Development of material design procedure

 Use in-situ properties with previously identified performance objectives

3. Experimental evaluation of repair materials

- Proprietary repair mixes
- New repair mixes

4. Extensive numerical study

• Characterize performance threshold resulting from differences in insitu properties and repair properties

REFERENCES

[1] PennDOT, Publication 408: Specifications. Harrisburgh, PA: Pennsylvania Department of Transportation, 2018.

[2] PennDOT, Publication 242: Pavement Policy Manual. Harrisburgh, PA: Pennsylvania Department of Transportation, 2018.

[3] T. P. Wilson, K. L. Smith, and A. R. Romine, "Materials and Procedures for Rapid Repair of Partial-Depth Spalls in Concrete Pavements: Manual of Practice," Federal Highway Administration, Washington, D.C., FHWA-RD-99-152, 1999.

[4] ACPA, Mid-Atlantic Chapter, Pavement Rehabilitation with Un-bonded Concrete Overlays.

[5] Sharifi, Naser P., and Kamyar C. Mahboub. "Application of a PCM-rich concrete overlay to control thermal induced curling stresses in concrete pavements." Construction and Building Materials 183 (2018): 502-512.

[5-1] L. Titus-Glover et al., Enhanced portland cement concrete fatigue model for street pave, Transp. Res. Rec.: J. Transp. Res. Board 1919 (2005) 29-37.

[5-2] R.G. Packard, S.D. Tayabji, New PCA thickness design procedure for concrete highway and street pavements, in: Third International Conference on Concrete Pavement Design and Rehabilitation Purdue University; Federal Aviation Administration; and Indiana Department of Highways, 1985.

[5-3] B.H. Oh, Fatigue analysis of plain concrete in flexure, J. Struct. Eng. 112 (2) (1986) 273–288.

[6] https://arcosalightweight.com/index.php/applications/internal-curing

[7] Bentz, Dale P., and W. Jason Weiss. Internal curing: a 2010 state-of-the-art review. Gaithersburg, Maryland: US Department of Commerce, National Institute of Standards and Technology, 2011.

[8] H. Kim and D. Bentz, "Internal Curing with Crushed Returned Concrete Aggregates for High Performance Concrete," presented at the NRMCA Concrete Technology Forum: Focus on Sustainable Development, Denver, CO, 2008.

[9] Chen, Siyu, et al. "Material selections in asphalt pavement for wet-freeze climate zones: A review." Construction and Building Materials 201 (2019): 510-525.

[10] Mayercsik, Nathan P., Matthieu Vandamme, and Kimberly E. Kurtis. "Assessing the efficiency of entrained air voids for freeze-thaw durability through modeling." Cement and Concrete Research 88 (2016): 43-59.

[11] Rupnow, Tyson D., and Patrick Icenogle. *Evaluation of surface resistivity measurements as an alternative to the rapid chloride permeability test for quality assurance and acceptance*. No. FHWA/LA. 11/479. Louisiana Transportation Research Center, 2011.

THANK YOU

max.stephens@pitt.edu jmv7@pitt.edu npsharifi@pitt.edu

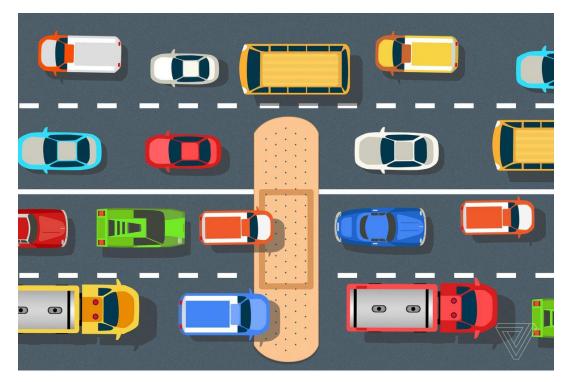


Image courtesy of https://www.theverge.com/2017/5/4/15544156/potholes-self-healing-materials-infrastructure-transportation

