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CURRENT METHODS OF REPAIR 
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Concrete Pavements 

Partial Depth Repair Dowel Retrofit Full Depth Repair 

Concrete Bridges 

Type 1 Type 2 Type 3 



CURRENT PRACTICES 
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Typical repair materials (Cementitious Materials) 
Product Material 

Category 
Working 

Time, min 
Installation 

Temp., ºF 
 

Time-to-
Traffic, 

hr. 

Moisture Conditions Material 
Cost 

Factor 
Repair 
Surface 

Aggregate 

Type III PCC PCC 20 32 to 109 4 to 6 SSD to dry 1-3% to dry 1 

Duracal gypsum-based 20 32 to 109 1.5 SSD to dry 1-3% to dry 0.7 

Set-45 magnesium 
phosphate 

10 32 to 90 1.5 dry 1-3% to dry 3.5 

Five Star HP high alumina 20 32 to 90 1.5 SSD to dry 1-3% to dry 3 

Pyrament 
505 

Hydraulic cement 30 32 to 109 2 to 3 SSD to dry 1-3% to dry 2 



THE PROBLEM 
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Deficiencies in Repair Materials [3] : 

• Compressive failure of repair material 

• Incompatible stiffness  

• Incompatible thermal expansion 

• Excessive autogenous shrinkage 

• Variability in repair material 

• Insufficient consolidation 

• Delayed curing 
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1. Identify critical parameters for compatible repair mixture 

2. Develop repair material selection framework 

3. Propose new mix designs 

4. Experimental evaluation of repair materials (developed and 

commercially available) 

Characterize 
Properties 

Material  
Selection 
Procedure 

Select  
Material 

Material Selection Framework 
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1. Improved strength & reduced erepair   

2. Extended durability 

3. Structure and Repair deform at the same 

rate: 

a.) Applied load  

b.) Change in temperature  

c.) Drying shrinkage  

Improved Performance 

» Internal curing 

» Elastic modulus, Erepair = Eexisting 

» Thermal coefficient, arepair = aexisting 

»  erepair reduced 

Traditional Repair Material Compatible Repair 

» 



PROGRESS TO DATE 

7 University of Pittsburgh | Swanson School of Engineering 

1. Performed literature review 

2. Defined performance criteria 

3. Identifying key parameters in material selection framework 

4. Identifying materials for use in repair mixes 

* Current step 
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Performance Criteria 

Constructability Easy to perform, Versatile, etc. 

Fresh 
Concrete 

Setting Time 

Workability (Slump) 

Hardened 
Concrete 

Flexural and Compressive Strength 

Fatigue Performance 
Stiffness Compatibility 
Thermal Compatibility 

Bonding 

Shrinkages (Autogenous and Total) 

Concrete 
Durability 

Freeze/Thaw Deterioration 
Chloride Permeability (Resistivity) 
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Performance Criteria 
Concrete Pavement 

Partial 
Depth 

Dowel 
Retrofit 

Full 
Depth 

Constructability Easy to perform, Versatile, etc. 9 9 9 

Fresh 
Concrete 

Setting Time 9 9 9 

Workability (Slump) 9 9 9 

Hardened 
Concrete 

Flexural and Compressive Strength 9 9 9 

Fatigue Performance 9 9 9 

Stiffness Compatibility 9 9 8 

Thermal Compatibility 9 9 8 

Bonding 9 9 8 

Shrinkages (Autogenous and Total) 9 9 8 

Concrete 
Durability 

Freeze/Thaw Deterioration 9 9 9 

Chloride Permeability (Resistivity) 9 9 9 
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Performance Criteria 
Concrete Pavement Concrete Bridges 

Partial 
Depth 

Dowel 
Retrofit 

Full 
Depth 

Type 1 Type 2 Type 3 

Constructability Easy to perform, Versatile, etc. 9 9 9 9 9 9 

Fresh 
Concrete 

Setting Time 9 9 9 9 9 9 

Workability (Slump) 9 9 9 9 9 9 

Hardened 
Concrete 

Flexural and Compressive Strength 9 9 9 9 9 9 

Fatigue Performance 9 9 9 9 9 9 

Stiffness Compatibility 9 9 8 9 9 8 

Thermal Compatibility 9 9 8 9 9 8 

Bonding 9 9 8 9 9 8 

Shrinkages (Autogenous and Total) 9 9 8 9 9 8 

Concrete 
Durability 

Freeze/Thaw Deterioration 9 9 9 9 9 9 

Chloride Permeability (Resistivity) 9 9 9 9 9 9 



PERFORMANCE CRITERIA 

11 University of Pittsburgh | Swanson School of Engineering 

1. Fresh Concrete 
� Workability 
� Set time/high early strength 

2. Hardened Concrete 
� Flexural and compressive 

strength compatibility 
� Stiffness compatibility 
� Thermal compatibility 
� Shrinkage (autogenous and total) 
� Bond 
� Fatigue 
 
 

Workability Tests 

Strength Tests 

Shrinkage Tests 
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3. Durability 
� Freeze/thaw deterioration 
� Chloride permeability 

4. Constructability 
� Simple to implement 
� Versatile 

 
 
 

 

Air Voids 

Super Air Meter Test 

[10] 

Permeability Test 



INTERNAL CURING 

13 University of Pittsburgh | Swanson School of Engineering 

[6, 7] 

• Saturated porous materials 
release water as needed to 
promote longer curing times 
in surrounding cement paste. 

 

• Shrinkage can be 
significantly reduced. 

 

• Improves bond between 
repair material and existing 
concrete. 

[8] 



SCHEDULE 
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     Year 1                Year 2 

Months 1 2 3 4 5 6 7 8 9 10 11 12 
    

Task 1: Literature Review       
  Deliverable 1: Report Summarizing Literature Review     

Task 2: Identification of  Performance Criteria         
  Deliverable 2: Report Summarizing Performance Criteria for Rapid Repair Methodologies     

Task 3: Identification and Evaluation of  Aggregate Sources           

  Deliverable 3: Report Summarizing Possible Aggregate Sources Including Sorption Characteristics     

Task 4: Development of  Material Selection Framework and Testing of  Repair Mixes               
  Deliverable 4: Report Summarizing Concrete Mix Designs and Experimental Results     

Deliverable 5: Draft Final Report     

Deliverable 6: Final Report                         



NEXT STEPS 
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1. Development of materials selection framework 
• Characterize in-situ PCC properties 

2. Development of material design procedure 
• Use in-situ properties with previously identified performance 

objectives 

3. Experimental evaluation of repair materials 
• Proprietary repair mixes 
• New repair mixes 

4. Extensive numerical study 
• Characterize performance threshold resulting from differences in in-

situ properties and repair properties 
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