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Ansys Additive Manufacturing Research Lab (AMRL)



ExOne Innovent
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AM Build Failures

EOS M290 DMLS
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Efficient Residual Stress Modeling

Detailed model
• Meso-scale (~0.1mm)
• Sequentially coupled 

thermomechanical analysis
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Extract inherent strains 
(element-by-element)

Inherent strain model
• Macro-scale (~100mm)
• Quasi-static mechanical 

analysis

Apply inherent strains 
(layer-by-layer)

 Reduce error in deformation from 40% to 10% compared to 
original inherent strain model

Q. Chen, A. C. To, et al., “An inherent strain based multiscale modeling framework for simulating part-scale residual 
deformation for direct metal laser sintering,” Additive Manufacturing, vol. 28, 406-418, 2019.
X. Liang, A. C. To, et al., “Modified inherent strain method for fast prediction of residual deformation in direct metal laser 
sintered components,” Computational Mechanics, vol. 64, 1719-1733, 2019. 4



Thermal Model Calibration
Goldak heat source model: ���� =
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laser power: P
laser absorptivity: ����
local coordinates : x’, y’, z’ 
Geometric factors: a, b, c

J. Goldak, A. Chakravarti, M. Bibby, Metall. Trans. B 15B 
(1984) 299-305

In-situ thermocouplesMelt pool cross section



Sensor-Fused AM Process

Sensor Fused AM Process
• High resolution real-time T & µε 

measurements

 Design proper structures to embed 
sensors without disturbing AM 
process and part itself

 Real-time measurements to study 
AM process itself

 Post-process monitoring to study 
residual strain formation and 
relaxation.

 Compare, correct, and validate DT

R. Zou, X. Liang, A. C. To, K. P. Chen, et al., A Digital Twin Approach to Study Additive Manufacturing Processing Using 
Embedded Optical Fiber Sensors and Numerical Modeling. IEEE Journal of Lightwave Technology, 6402-6411, 2020. 6



Sensor-Fused AM Process

(a) Detailed simulation (b) Strain from simulation and experimental results

R. Zou, X. Liang, A. C. To, K. P. Chen, et al., A Digital Twin Approach to Study Additive Manufacturing Processing Using 
Embedded Optical Fiber Sensors and Numerical Modeling. IEEE Journal of Lightwave Technology, 6402-6411, 2020. 7



Defects in Laser Powder Bed AM

DITT SWANSON ■ I I I ENGINEERING
ANSYS ADDITIVE MANUFACTURING 
RESEARCH LABORATORY
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In-Situ Defect Detection Using IR Imaging and ML

Inputs
- Heat intensity
- Cooling rate
- Interpass 
temperature 
- Local spatter 
counts

Outputs
- Local 
porosity
- Defect type
- Maximum 
defect size

Infrared (IR) 
camera

Aims to estimate the defects in LBPF- 
manufactured parts from in-situ IR monitoring 
data using deep learning
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In-Situ IR Camera

The camera is mounted on an EOS 
M290 DMLS machine
640x480 Pixel detector

• 360 µm pixel size
Frame Rate: 30 (FPS)
Ranges:

• -20 – 120 °C
• 0 –650 °C
• 300 – 2,000 °C
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In-Situ IR 
Signature 
Extraction

CAD Geometry Voxel Mesh

3D Reconstruction- Understand causal 
relationship with 
porosity

- Reduce data storage 
and enable real-time 
processing

IR Image
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Complex Part: Heat Map
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Complex Part:
Interpass Temperature
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Porosity Analysis

ANSYS ADDITIVE MANUFACTURING 
RESEARCH LABORATORY
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DNNs Porosity Prediction

Prediction accuracy over 90% for porosity over 0.8% (~50 µm)
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Feature Importance Analysis by SHAP 
(SHapley Additive exPlanations) Method

15544

For more details: https://christophm.github.io/interpretable-ml-book/shap.html 18

https://christophm.github.io/interpretable-ml-book/shap.html


Inverse Correlation between Spatter 
Counts and Porosity
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What About the Cooling Rate and 
Heatmap?

• Higher cooling 
rates cause 
more porosity

• correlation 
between spatter 
count and cooling 
rate not clear

• Inverse correlation 
between maximum heat 
intensity and porosity
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Conclusions
• Optical fiber successfully embedded using AM and deformation 

measurement validated
• Various key signatures can be extracted from a single IR camera 

for detecting defects
• Porosity predictor DNNs developed have more than 90% prediction 

accuracy for porosity greater than 0.8% (~50 µm)
• Possible defect generation mechanisms found:

• Spatter generation is the most dominant feature of lof-pore generation
• High cooling rates and low heat intensity cause lof-pore generation

Future Work
• Develop algorithms to obtain other key defect signatures
• Use simulation data to improve ML predictions
• Integrate optical fiber sensing into in-situ AM monitoring
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Thank You!

• Prof. Albert C. To
• albertto@pitt.edu
• Department of 

Mechanical Engineering 
& Material Science

• University of Pittsburgh
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