

"Risk based Framework for Geo-hazards"

WE'LL DISCUSS...

- 1. Basic risk/reliability design concepts (i.e., LRFD)
- 2. Risk examples
- 3. System-based risk examples
- 4. Summary

Uncertainties Involved in Estimating Soil Parameters

(Kulhawy and Phoon 2002)

Deterministic (FS) vs. Reliability-Based Design

Deterministic Design

- F_s > F_{S,Target}
- F_{S,Target} is logically based on experience
- The same FS is applied to conditions with varying degrees of uncertainty; which is not logical

Reliability-Based Design

- $\beta > \beta_{\text{Target}}$ (or P_f)
- Provides a means of evaluating combined effect of uncertainties
- Requires more data, time and effort, and is not as familiar to most geotechnical engineers

Geotechnical Reliability Analysis

The less uncertainty, the better

• The greater the scatter (or COV), the higher the probability of failure (p_f)

 $COV = \sigma / \mu$ where, COV = coefficient of variation $\sigma = standard$ deviation, and $\mu = mean$ James Martin | Swanson School of Engineering | 8

Level I and II Reliability-Based Design

PBD Example 1: Soil Mixing in Clay – Square footing bearing capacity

PBD Example 1 - Deep Soil Mixing in Clay

mixing blade rotated down to the required depth

lime or cement supplied while retracting the mixing tool

PBD Example 1 - Soil-Mixed Columns

PBD Example 1 – Soil Mixing PBD Results

Levee Failure - Hurricane Katrina

Levee System Risk Modeling Example

Levee System Risk Modeling Example

Behavior of Risk Over Time

James Martin | Swanson School of Engineering | 21

SYSTEM DYNAMICS (SD) MAP OF HOW INSURANCE AFFECTS BEHAVIOR

SUMMARY

- Our risks are rapidly evolving;
- Solutions, approaches, tools, and leadership must likewise evolve and adapt...faster
- Risk-based approaches increasingly required, including system-based risk
- Must shift from silos to systems
- Our Grand Challenge: How do we take a "fuzzy" concept like risk and distill that down to what we each should do differently each day?