Susan Fullerton

Susan Fullerton

Assistant Professor
Department of Petroleum and Chemical Engineering
Fullerton Group


The mission of the Nanoionics and Electronics Laboratory, led by Susan Fullerton, is to establish a fundamental understanding of ion-electron transport at the molecular level, and use this knowledge to design next-generation electronic devices at the limit of scaling for memory, logic, and energy storage.

Her research focuses on the development of materials for low-power electronics and next-generation batteries. She is a co-PI in the Center for Low Energy Systems Technology ( LEAST ), one of six STARnet centers funded by the semiconductor research corporation (SRC) and DARPA. The goal of the center is to develop low-power transistors and memory using 2D materials that are only one atom or molecule thick.  Fullerton uses polymer electrolytes to enable the exploration of new regimes of transport in the 2D materials, with the goal of developing a transistor with an operating voltage lower than traditional CMOS.  

Fullerton also uses electrolytes for the development of a 2D flash memory that would shrink memory to the ultimate limit of scaling.  Her work on this project is funded by the NSF through their GOALI program:  Grant Opportunities of Academic Liaison with Industry.  The industrial partner is Micron Technology, Inc. - a global leader in memory technology.  Fullerton and her co-PI, Alan Seabaugh (U. of Notre Dame), combine their expertise in polymer physics and device physics, respectively, using ion transport to control electron transport in graphene - a single layer of carbon atoms.