Pitt | Swanson Engineering
“Bluetooth Bacteria” Wins a Gold Medal at iGEM 2020
Pitt iGEM received a gold medal for their project titled “Bluetooth Bacteria.” They were also one of three teams nominated for “Best Foundational Advance Project.”

PITTSBURGH (January 12, 2021) … Wi-Fi and Bluetooth technology have provided an invaluable connection to the workplace and the outside world as we remained sheltered at home in 2020. As part of a virtual research competition, a team of University of Pittsburgh undergraduates explored if a comparable equivalent to this ubiquitous technology could allow scientists to wirelessly manipulate cell behavior and control gene expression. 

The group pitched this idea for the 2020 International Genetically Engineered Machine (iGEM) competition, an annual synthetic biology research competition in which teams from around the world design and carry out projects to solve an open research or societal problem. More than 250 teams participated in the organization’s first Virtual Giant Jamboree, and the Pitt undergraduate group received a gold medal for their project titled “Bluetooth Bacteria.”

This year’s group was also one of three teams that were nominated for “Best Foundational Advance Project.”  This is the first time a Pitt iGEM team has been nominated for an award at the iGEM competition.

The team included one Swanson School of Engineering student: Lia Franco, a chemical engineering junior. Other members included Sabrina Catalano, a senior molecular biology student; Dara Czernikowski, a senior biological sciences student; Victor So, a senior microbiology and English literature student; and Chenming (Angel) Zheng, a junior molecular biology student.

BB-team

“This sort of non-invasive technology could be used for timed drug release, synthetic organ and neuron stimulation, or even industrial applications,” Czernikowski said. “We first considered optogenetics, which uses light to manipulate cell behavior, but this strategy cannot target deep tissue without risky invasive methods so we needed to change our approach.” 

The team ultimately decided to attach magnetic nanoparticles to the surface of bacteria and stimulate them with an alternating magnetic field (AMF). The nanoparticles react to the AMF stimulation and dissipate heat, causing the temperature of the bacterium’s cytoplasm to rise. They then used a protein dimer to act as a “bio-switch” to control gene expression.

“At lower temperatures, the protein dimers bind to a target DNA sequence and turn off gene expression, but at higher temperatures, heat causes the proteins to un-dimerize,” Catalano explained. “In its un-dimerized state, it can no longer inhibit gene expression, turning the system on. The change in temperature is controlled by the stimulation of magnetic nanoparticles with AMF, allowing wireless control of gene expression in bacteria.”

The team hopes that there is therapeutic potential for their design but recognizes that they need to improve spatial control in order to match techniques like optogenetics. They would like to improve their design to use localized heating that could selectively target one bacterium or a specific region of the cytoplasm. They plan to continue development during the upcoming semester.

“The iGEM competition is a unique experience where undergraduates take charge and develop and execute their own research idea, with close mentorship from a set of faculty mentors,” said W. Seth Childers, assistant professor of chemistry at Pitt and one of five faculty advisors for the Bluetooth Bacteria team. “This year’s team worked hard under the stress of a pandemic to bring together engineering and biology concepts to consider how one could wirelessly control a bacterium.”

Another unique aspect of their project is the “Bluetooth Bacteria Podcast” – a casual and conversational podcast that seeks to educate the general population on topics and current developments in synthetic biology.

“One of our main project goals was effective science communication,” said Catalano. “Because COVID-19 limited our ability to teach synthetic biology in person, we thought it would be fun to make a podcast as it is accessible to a wide audience. It gave us the opportunity to hear from iGEM teams all over the world, including France, London, and India.”

The team published two episodes every week, and they are available on Apple Podcast or Spotify.

The other faculty advisors include Alex Deiters, professor of chemistry; Jason Lohmueller, assistant professor of surgery and immunology; Jason Shoemaker, assistant professor of chemical and petroleum engineering; and Sanjeev Shroff, Distinguished Professor and Gerald E. McGinnis Chair of Bioengineering.

# # #

The team was sponsored by the University of Pittsburgh, Pitt’s Swanson School of Engineering, Pitt’s Department of Bioengineering, the Richard King Mellon Foundation, Open Philanthropy, Integrated DNA Technologies, TWIST Bioscience, GenScript, Ginkgo Bioworks, Benchling, Revive & Restore, SnapGene, MathWorks, New England BioLabs Inc., and Promega.

Photo caption: (from left) Sabrina Catalano, Dara Czernikowski, Lia Franco, Victor So, and Chenming (Angel) Zheng.

 

1/12/2021

Contact: Leah Russell