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Strain recovery of model immiscible blends

without compatibilizer

Abstract Strain recovery after the
cessation of shear was studied in
model immiscible blends composed
of polyisobutylene drops (10-30%
by weight) in a polydimethylsiloxane
matrix. Blends of viscosity ratio
(viscosity of the drops relative to the
matrix viscosity) ranging from 0.3 to
1.7 were studied. Most of the strain
recovery was attributable to interfa-
cial tension, and could be well-de-
scribed by just two parameters: the
ultimate recovery and a single
retardation time. Both these param-
eters were found to increase with the
capillary number of the drops prior

to cessation of shear. For blends that
had reached steady shear conditions,
the ultimate recovery decreased with
increasing viscosity ratio, whereas
the retardation time increased with
increasing viscosity ratio. The retar-
dation time was well-predicted, but
the ultimate recovery was over-pre-
dicted by a linear viscoelastic model
developed previously by Vinckier

et al. (Rheol Acta 38:65-72, 1999).
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Introduction

The rheological properties of blends of immiscible ho-
mopolymers have received much attention in recent
years (Tucker and Moldenaers 2002). Several publica-
tions have been devoted to examining the relationship
between the rheology and morphology of two-phase
blends. A key strategy employed by many researchers
was to conduct experiments on ‘“‘model” blends that
were comprised of rheologically-simple polymers. This
gave the enormous advantage that any non-Newtonian
behavior of the blend could be ascribed unambiguously
to interfacial effects, and thus correlated quantitatively
with the morphology of the blend.

We are presently studying the effects of added com-
patibilizer on the rheology of such model immiscible
blends. As a part of this research we conducted several
“baseline”” measurements on blends without compatibi-
lizer, some of which are of interest in their own right.
Here we summarize some observations of the creep

recovery after cessation of shear of model uncompati-
bilized blends with droplet-matrix morphologies. These
results add significantly to the data on creep recovery of
immiscible blends, in particular, we are unaware of any
previous publications that detail the effects of volume
fraction and viscosity ratio of the immiscible phases on
the creep recovery. The effects of added compatibilizer
are discussed in the accompanying paper.

Theory

When under shear, droplets in the blend are deformed
and partially oriented along the flow direction. Upon
cessation of shear, these droplets retract back to their
spherical shape. This retraction drives strain recovery of
the blend (Gramespacher and Meissner 1992, 1995;
Vinckier et al. 1999); clearly if the drops are highly de-
formed and oriented prior to cessation of shear, a larger
recovery is expected. Such interface-driven recovery
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adds to any recovery from the bulk phases themselves.
Since the blends discussed here are composed of nearly
Newtonian bulk phases, the recovery is almost entirely
due to the interface.

Vinckier et al. (1999) developed a model for the creep
recovery of blends from steady shear in the linear vis-
coelastic regime and we will summarize their main re-
sults here. The linear viscoelastic properties of
immiscible blends of Newtonian components can be
described by a Jeffreys model (Oldroyd 1953; Vinckier
et al. 1999)

, d . dy.
l—i—AFla a =1 1+AF25 Y

where ¢ and y are the shear stress and shear strain
respectively, and an overdot denotes a time derivative.
The above equation describes the blend in terms of three
properties: the blend viscosity, #y,, the relaxation time,
Ar1, and the retardation time, Ag,. The subscript “F” is
intended to denote the “form” relaxation or retardation
processes attributable to retraction of deformed drops
back to a spherical drop shape (Jacobs et al. 1999); in
the following paper, additional processes will be intro-
duced. Integrating this equation with initial conditions
corresponding to cessation of a steady shear stress,
Vinckier et al. (1999) showed that the recovery follows
exponential kinetics:

(1)

7= Vooll — exp(—t/ip2] (2)

where

Yoo = 2 (Jp1 — J2) (3)
My

where ¢ is the shear stress prior to recovery and 7y ., is
the ultimate recovery. Substituting gy = 1,7, where 7, is
the shear rate during the steady shearing prior to
recovery, Eq. 3 becomes

(4)

where Ay = Jo4r1 and A, = JoAr2 are the dimensionless
relaxation and retardation times respectively. Vinckier
et al. used the following expressions for ip; and Ap» gi-
ven by Graebling et al. (1993b):

Yoo = Yo(AF1 — /1F2) = i;1 - ”Ez

. 19 +16[ 2p+3-2¢p(p—1)
= Ca— Lo@+ 1) —26(5p + 2)} (5)
.~ 19p+16] 2p+343¢(p—1)
#ry = Ca— [10(;7 1) +3¢(5p + 2)} (6)

where the capillary number, Ca, of the drops is defined
as

04

(7)

Here R is the drop radius, #,, is the matrix viscosity and
o is the interfacial tension.

In this paper, only terms up to order ¢ will be re-
tained. Therefore, Egs. 5 and 6 are expanded in powers

of ¢:

. 19p + 16 19p+ 16
. 19p + 16 3(19p + 16)
o = ol 1 [0 gy ¢+ 0(¢)
©)

Eqgs. 8 and 9 are identical to those provided by Oldroyd
(1953). Substituting Eqs. 8 and 9 into Eq. 4:

() oo

Equation 10 helps make the connection between drop
deformation and creep recovery explicit. Specifically,
Taylor’s theory (Taylor 1934) predicts that at small Ca,
the deformation of the drops is given by

19p + 16

BRI

Substituting into Eq. 10,

Yoo = DTaylor% (19ppT+116) [¢ - O<¢2)] .

(10)

(11)

DTaylor

(12)

The linear viscoelastic theory thus predicts that the
ultimate recovery proportional to the deformation.

In summary, the Vinckier model suggests that the
recovery process can be captured in terms of only two
parameters, the ultimate recovery and the dimension-
less retardation time, both of which are proportional
to the Ca prior to cessation of shear. Other note-
worthy features of the linear viscoelastic theory of
Vinckier et al. (1999) are:The absolute value of drop
size or interfacial tension does not appear in any of
the above equations: the dimensionless rheological
properties 7.. and Ay, can be expressed in terms of the
dimensionless parameters Ca, p, and ¢.The ultimate
recovery from Eq. 10 is only weakly dependent on p.
This is related to the weak dependence of Dryyior ON p
(Eq. 11) as pointed out by Taylor.The coefficient of d)z
in Eq. 10 is negative; the ultimate recovery is predicted
to increase slower than the volume fraction due to
pairwise drop interactions, provided Ca is held con-
stant.The coeflicient of ¢ in Eq. 9 is also negative; the
dimensionless retardation time reduces as the volume
fraction of the drops increases, provided Ca is held
constant.

It must be emphasized that Eqs. 9 and 10 have a
strong dependence on Ca. Therefore verifying the last
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two features (trends of 7., and i as ¢ increases) re-
quires that Ca be held constant. This is difficult to do
experimentally unless coalescence is very slow.

Experimental

Blends were composed of polyisobutylene (PIB) as the
drop phase and polydimethylsiloxane (PDMS) as the
matrix phase. Blends with 10, 20 and 30% by weight of
PIB were studied. These correspond to volume fractions
of 0.11, 0.21 and 0.32 respectively. The viscosities of the
two components at the three temperatures of experiment
are listed in Table 1. Both fluids were nearly-Newtonian
under experimental conditions. Blends were prepared by
mechanical mixing with a spatula as described previ-
ously, and degassed in a vacuum. Experiments were
conducted in a TA Instruments AR2000 stress con-
trolled rheometer in a 40 mm/1 ° cone angle using a
Peltier cell to maintain sample temperature at the values
listed in Table 1. The shear history of the samples is
shown in Fig. la: samples were presheared at 480 Pa for
3,000 strain units, and the recovery was measured.
Shearing was then continued at 120 Pa. The 120 Pa
shearing was interrupted periodically to measure the
recovery. For samples with 10 wt% drops, dynamic
oscillatory experiments at 25% strain were also con-
ducted subsequent to recovery. At this low weight per-
centage of drops, there was no change in the
morphology of the sample over the timescale of a fre-
quency sweep test.

No compatibilizer was added to any of the blends in
this paper; compatibilizer effects are discussed in the
accompanying paper.

Results
Experimental results of recovery

Figure 1b shows the creep recovery of blends with 10
and 30 wt% drops after shearing at 120 Pa for the
various times specified in the figures. The recovery of
the matrix phase PDMS is also plotted for comparison
(the recovery of the PIB was too small to be measured).
It is clear that the blends show significantly more

Table 1 Viscosities of components and viscosity ratios of blends

Pure components Viscosity at 120 Pa shear stress Pa.s

17 °C 23 °C 32°C
PIB 181 101 46
PDMS 106 94 159
Viscosity ratio p 1.70 1.10 0.29
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Fig. 1 a Schematic of shear history of samples. b Recovery of
blends with viscosity ratio 1.1 and 10 wt% or 30 wt% drops at
various times after stepping down the shear stress to 120 Pa.s.
These times, in seconds, are listed alongside each curve

recovery than the components. While the ultimate
recovery and the time to complete the recovery process
vary with the volume fraction and viscosity ratio of the
drops, the shape of the curves are qualitatively similar
for all blends. The recovery curves are also qualitatively
similar to the results of Vinckier et al. (1999) for a
similar blend with 10 wt% drops. For the blends with
10 wt% drops, the ultimate recovery and the time re-
quired to complete the recovery process both increase
with increasing shearing time. This can be understood
easily: after reducing the shear stress from 480 to 120 Pa,
initially-small drops grow by coalescence and are more
deformed, and hence show more recovery. In contrast,
for the blends with 30 wt% drops, the ultimate recovery
is maximum at some short shearing time, and then re-
duces to its steady state value. The same was observed
for the other two viscosity ratios (not shown). This result
is not consistent with a monotonic increase in drop size
and we have no explanation for it.
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A second notable feature, a reversal of recovery is
evident for the blends in Fig. 1. Reversal is largest at
short shearing times, especially for the blend with
30 wt% drops, but quite modest at steady state. Vinc-
kier et al. (1999) claimed that they did not observe
reversal of recovery in similar blends with 10 wt%
drops, yet, weak reversal is evident in their own data (see
Fig. 3 in Vinckier et al. 1999). Far stronger reversal of
recovery in two-phase blends was first documented by
Gramespacher and Meissner (1995), with up to a third
of the maximum recovery being reversed. To our
knowledge, a clear explanation of the reasons for
reversal of recovery has not yet been established. Yet,
since the components of the blends studied here show
negligible recovery, one of the proposed explanations
(Gramespacher and Meissner 1995), viz., a coupling
between recovery from the bulk and recovery due to
interfacial tension, can be ruled out. Reversal of recov-
ery is not discussed further in this paper.

Data analysis

Figure 2 replots the data for both volume fractions after
shearing for very long times (i.e. to steady state; see
below) on a log-log scale. It is evident that much of the
recovery occurring prior to 0.1 s is attributable to
recovery of the matrix phase PDMS. Since we are pri-
marily interested in the recovery that is attributable to
the interface, this “‘component contribution” must be
subtracted from the blend recovery. Following Vinckier
et al. (1999), we do this in a simple-minded fashion. The
quantity of interest, viz., the interfacial contribution to
the recovery, Yinerface(?) 18 obtained by simply subtract-
ing the volume average contribution of the components:

yinterface(t) = ymeasured(t) - Z (rbiyi(t)

~ Vmeasured (1) — PpDMSYPDMS (1)

(13)

where the second part of this expression is justified by
the fact that the PIB phase shows negligible recovery.
While this equation is not rigorous, the errors involved
are expected to be small due to the nearly Newtonian
nature of the pure components. After subtraction of the
component contribution, the remaining recovery, which
is attributable to interfacial tension, appears to be of a
very simple nature. Indeed in accord with Vinckier et al.
(1999), the single exponential kinetics of Eq. 2 appear to
fit the recovery reasonably well (except the slight reversal
of recovery, which obviously cannot be captured by any
monotonically decaying function). The fits then yield the
retardation time Ag,, which can be made dimensionless
by multiplying by the shear rate prior to the cessation of
shear, thus obtaining J1>. To summarize, only two
parameters of the recovery curves will be reported
henceforth: the ultimate recovery y.. which is obtained

directly from the recovery curves, and the dimensionless
retardation time A p» obtained from single-exponential
fits. Both y .. and Ap, refer to the interfacial contribution
to the recovery as defined by Eq. 13.

For the blends with 10% of the dispersed phase, we
also conducted dynamic oscillatory measurements
immediately following the recovery; at the higher vol-
ume fractions, rapid quiescent coalescence did not per-
mit obtaining the dynamic mechanical properties. A
typical example of the dynamic moduli is shown in
Fig. 6 in the Appendix. The characteristic relaxation
time of the blend was calculated from storage modulus
G’ of the blends as described in the Appendix. The
capillary number was calculated from this relaxation
time by applying Eq. 9. Thus, the Ca of the blends
immediately prior to recovery can be obtained from the
dynamic oscillatory measurements, assuming that drops
do not break during recovery. Due to some ambiguities
in the fitting procedure, these values of Ca are expected
to have systematic errors of about 10% i.e. all the Ca
values of a particular blend could be varied by up to
about 10% with minimal changes to the fitting quality.

Discussion
Figure 3a and b show the two parameters of the

recovery 7 ., and Ap, for blends with 10 and 30 wt%
drops. It is clear that both quantities show similar

014

recovered strain

0.014

0.01 0.1 1 10
time (s)

100

th}

Fig. 2 Data analysis of recovery curves: Open symbols: “‘raw
recovery data; these are the same data labeled “53912” in Fig. 1.
Filled symbols: recovery after subtraction of component contribu-
tion as per Eq. 11. Solid lines fits to single exponential kinetics
Eq. 2
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trends. The maximum in ultimate recovery at very short
shearing times mentioned in Sect. 4.1 is clearly evident in
Fig. 3b. Figure 3a also plots the Ca values obtained
from the dynamic mechanical experiments; evidently Ca
and the dimensionless retardation time show exactly the
same trend.

The data of Fig. 3a are replotted in Fig. 4 and com-
pared with the predictions of Eqgs. 9 and 10. Above it
was mentioned that there is up to 10% systematic error
in the Ca values; thus, the entire set of points corre-
sponding to a particular viscosity ratio could be moved
to the right or left by up to 10%. Considering this error,
Eq. 9 seems to predict the retardation time reasonably
well, however, Eq. 10 significantly overpredicts the

ultimate recovery. This comment requires immediate
qualification. The Ca was obtained here from the
relaxation time in dynamic oscillatory experiments, thus,
Fig. 4a is essentially a plot of y., versus the relaxation
time, and Fig. 4b is a plot of the retardation time versus
the relaxation time. Thus, a more precise conclusion is
that the Vinckier model is able to capture the ratio of the
relaxation time to the retardation time accurately, but
the y.. resulting from this model is too large. This con-
clusion that y., is overpredicted is supported by results
for blends with 20% or 30 wt% drops. For these blends,
Ca values could not be obtained hence the predictions of
Eqgs. 9 and 10 cannot be tested directly. Yet, the ratio of
7. and Ap», can be compared with that predicted by the
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Fig. 4 a Ultimate recovery, and b dimensionless retardation time of
blends with 10 wt% drops and various viscosity ratios. Lines
represent Eq. 10 in (a), and Eq. 9 in (b). Inset to a is discussed in
the text

Vinckier model. The experimental ratio y./Ap, was
found to be less than half that predicted by Egs. 9 and
10, thus confirming that the ultimate recovery is indeed
strongly over-predicted by the Vinckier model. Including
terms with higher order in ¢ Egs. 9 and 10 do not
change this conclusion. In contrast Vinckier et al. (1999)
concluded that Eq. 10 worked well for one specific blend
(p=0.44, 10 wt% drops). It must be emphasized how-
ever that they obtained the Ca by a completely different
method: microscopic measurements of drop size and
independent measurements of interfacial tension were
used calculate Ca from its definition (Eq. 7).

A second observation from Fig. 4a is that while the
theory predicts a weak increase in the ultimate recovery
with viscosity ratio (Eq. 10), the data show that y.. de-
creases strongly with increasing viscosity ratio. This is
probably due to fact that the linear viscoelastic theory
assumes slightly deformed drops and hence is valid at
only small Ca.

Lastly, the y.. versus Ca curves seem to show quali-
tatively different shapes at different viscosity ratios: for
p=1.1 or 1.7, the curves are slightly convex-up and y..
appears to level off at high Ca, whereas for p=0.29, the
curve is slightly convex-down and y.. appears to increase
sharply above Ca=0.4. We propose that this is directly
related to the trends in drop deformation as Ca increases
beyond the limit of Taylor’s linear theory (Taylor 1934).
Indeed Maffetone and Minale (1998) have proposed a
model of drop deformation to capture such non-linear
deformation behavior of drops. For simple shear flow,
the Maffettone—Minale model gives

\/flz + Ca® — \/fl2 + Ca? — f}Ca’
D =
MM £,Ca
where f| and f, are functions of p and can also be
functions of Ca. Note that Eq. 14 corrects a typo-
graphical error in the original paper. Maffettone and
Minale (1998) recommended

40(p+1)

(2p+3)(19p+16)°

(14)

Si= (15)

Two choices were provided for f>. We will use

5

f2:2p+3

(16)

Substituting Eq. 14 instead of Drqayior into Eq. 12, the
inset of Fig. 4a is obtained. Clearly, the Maffettone—
Minale model can qualitatively capture the convex-up vs
convex-down trends of the y ., versus Ca curves at var-
ious viscosity ratios, however, the ultimate recovery is
still overpredicted. Using the alternative choice for f,
(Maffettone and Minale 1998) does not improve agree-
ment with the experimentally measured y...

Finally, we examine the dependence of 7., and 4 p-»
after cessation of steady shear on the volume fraction.
Figure 5a shows that the ultimate recovery is either
proportional to ¢ (at p=1.1) or increases faster than ¢
(»p=0.29 or 1.7). At first glance this seems to contradict
Eq. 10 in which the coefficient of ¢ is negative. How-
ever, since the steady shear Ca is itself expected to in-
crease with ¢ due to accelerated coalescence, a
straightforward comparison with Eq. 10 is not possible.
Figure 5b shows that the retardation time of the blends
decreases significantly with increasing ¢ for blends with
p>1, but increases slightly for p=0.29. Once again,
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direct comparisons with Eq. 9 are not possible due to the
likely changes in the steady state Ca with viscosity ratio.
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Fig. 6 Analysis of dynamic mechanical data. Open circles are the
measured G’ of a blend with 10 wt% drops, p=1.1, sheared for
53912 s at 120 Pa. The solid line corresponds to Eq. 17 with n=2
i.e. a sum of two Maxwell modes

1.7. The creep recovery attributable to the interface can
be characterized by only two parameters: a single
retardation time and the ultimate recovery.

For recovery after reaching steady state shearing
conditions, the wultimate recovery increased with
increasing weight fraction of the drops and with
decreasing viscosity ratio. The dimensionless retardation
time showed the opposite trend generally increasing with
decreasing weight fraction of drops and with increasing
viscosity ratio.

For recovery before reaching steady shear conditions,
Vinckier’s model (1999) for creep recovery in the linear
viscoelastic regime of emulsions was evaluated. The
model was found to predict the retardation time well,
but was also found to overpredict the ultimate recovery
significantly. We conclude that the linear viscoelastic
model of blend rheology can capture recovery qualita-
tively but not quantitatively.

Acknowledgements We are grateful to the University of Pittsburgh
and the ACS Petroleum Research Fund (Grant #39931-G9) for
supporting this research.

Summary and conclusions

Creep recovery of blends of immiscible, nearly Newto-
nian, polymer melts was studied, with the drop weight
fraction ranging from 0.1 to 0.3 and the ratio of the
viscosity of the drops to the matrix ranging from 0.3 to

Appendix

Figure 6 shows a typical dynamic mechanical frequency
sweep measurement for a blend with 10 wt% drops.
Also shown is the G” expected from the components
(calculated using the Palierne model with the interfacial
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tension set to zero). The most obvious feature is the
pronounced shoulder in the measured G” of the blend
that is entirely absent from the components. This
shoulder has been attributed to the interfacial tension
and its characteristics can be related to the size of the
drops in the blends (Graebling et al. 1993a, 1994
Vinckier et al. 1996). Such frequency sweep data have
been analyzed extensively in past publications (Grae-
bling et al. 1993a, 1994; Vinckier et al. 1996; Kitade
et al. 1997; Velankar et al. 2001). Here we will follow the
analysis outlined by Velankar et al. (2004), which was
specifically devised for the situations in which the
shoulder in G’ is prominent and well-separated from any
higher frequency relaxations. The G’ expected from the
components was first subtracted from the measured G’
of the blend. The remainder, which may be regarded as
the interfacial contribution to the G’, was fitted to a sum
a few (up to 3) Maxwell modes:

(17)

Z ® exp(ay + 2t)
1 + w? exp(2#).

Fits were performed using the free gnuplot software
as described previously (Velankar et al. 2004). A sample
fit has been shown in Fig. 6, and additional examples
have been shown previously (Velankar et al. 2004). In all
cases, the Maxwell mode corresponding to the shoulder
in G” was separated from any other modes by at least
one decade in frequency. Thus, for all practical pur-
poses, the shoulder can be captured by only one Max-
well mode. The corresponding relaxation time,
multiplied by the shear rate prior to cessation of shear,
yields the dimensionless relaxation time Ap,. Equation 8
is then used to obtain the Ca.
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