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A B S T R A C T

The measurement of the rupture force for an axially strained liquid bridge has been the subject of research
for the last three decades and is fundamental to the understanding of the behavior of multiphase systems in
granular materials. The study herein presents experimental work measuring the rupture force of pendular
and capillary bridges in a three-particle configuration providing an axial and a shear strain. Results and
subsequent analysis indicates that the rupture force and maximum rupture distance are the effect of surface
characteristics, straining mechanism and effective liquid volume. For systems of more than two particles,
we note that the effective packing fraction of the particles has a significant impact on the force required to
rupture such a bridge.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Investigating the phenomena involved in solid–liquid interac-
tions is important due to the ubiquitous presence of compound
solid–liquid systems among a variety of industries (i.e. pharmaceuti-
cal, chemical, cosmetic, and agricultural) and with diverse chemical
and physical applications, such as agglomeration, and crystal growth.
In these systems strong adhesion can result from the liquid menis-
cus that forms around the point of contact between solid surfaces [1].
This force is called the capillary force. In a two-particle system, these
menisci bind solid surfaces by creating a bond between two finite
contact points. The phenomenon of capillary adhesion is of great
importance for granular materials and powders in the macroscale [2].
While the formation of agglomerates is commonplace in the indus-
trial processing of solid mixtures, axial straining of a liquid bridge, in
particular, can be evidenced in the granulation process.

Understanding and modeling multiphase systems is complex due
to the different forces acting on the solids depending on the vol-
ume of fluid present. Depending on the liquid volume-capillary,
surface and viscous forces can appear and change the mechanical
properties of the mixture, such as its tensile strength [3–5]. The
increasingly intricate interactions between the solid and liquid com-
ponents, as the saturation level increases, has limited most of the
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available experimental studies to the pendular regime, and analyti-
cal models are developed for stable pairwise, axisymmetric bridges.
Furthermore, the study of the formation and rupture of binding liq-
uid networks has the added problem of bridge stability, particularly
when dealing with bridges linking spherical solids. To forgo this
problem most studies are limited to working with small liquid vol-
umes (relative to particle size) such that a stable meniscus can be
sustained between the solids [6,7]. A formal definition of what we
consider to be small liquid volumes will be discussed later.

The attraction or repulsion forces between solids and the intersti-
tial liquid are a result of a pressure differential across the interface.
The pressure differential can be calculated using the Young–Laplace
(YL) equation if the shape of the meniscus is known [2]. Megias-
Algacil & Gauckler [8,9] recently presented a study for the capillary
forces between spheres for liquid volumes forming both concave and
convex liquid bridges. The results analyze the nature of the cohe-
sive forces and present values for contact angle and relative liquid
volume, defined as Vrel = V/

(
4
3pR3

)
, for which a concave or con-

vex meniscus can be expected. Urso et al. [10,11] present theoretical
two-dimensional studies for the rupture of liquid bridges includ-
ing the transitional states between pendular and capillary saturation
level. They introduce equations to calculate the area of the liquid
bridge surface for different saturation states and meniscus geome-
tries. Murase et al. [12,13] presented a first attempt at characterizing
the straining phenomena for a liquid bridges of different volumes
held between three spheres both experimentally and computation-
ally. They focused largely on the differences between dynamic and
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static pendular bridge forces and conclude that the maximum tensile
force of the liquid bridge is the same for the two and three sphere
system for a static rupture mechanism, but two times larger for the
three-particle configuration under dynamic rupture conditions.

It is the objective of this study to perform experimental mea-
sures for the rupture force of menisci between two- and three-sphere
interactions. We will follow the taxonomy described by Urso et al.
[10,11], where bridges between two particles are termed pendu-
lar, systems where the particle interstices are fully saturated are
called capillary, and intermediate saturations where there are vary-
ing degrees of interstitial voids are considered to represent funicular
saturation. This work will measure both pendular and capillary rup-
ture forces with a focus on the impact of bridge volume and particle
symmetry effects.

1.1. The rupture of a pendular liquid bridge

The rupture force for pendular liquid bridges has been studied
for decades [2,4,5,14-18]. Particle–plane and particle–particle inter-
actions have been modeled for spherical particles and small liquid
volumes. In general, the solution to the rupture energy of a liquid
bridge can be found by considering it as a two-part problem. First,
the stability problem and second, the net attraction/repulsion forces
induced by the formation of liquid bridges [4].

When considering a packed bed, the theory for different satu-
ration levels identifies the limit of the pendular regime at ≈13%
moisture content, while the funicular regime is identified as corre-
sponding to a moisture content above 13% and up to 25% [19]. It is
known additionally, that for small enough volumes, where the effect
of gravity can be neglected, the mean curvature of the bridge surface
between two spheres may be approximated as constant and the con-
tact point is fixed [20]. The maximum volume of fluid, for which the
effects of gravity can be considered negligible, is estimated using the
following equation:

j =
√

s

gq
, (1)

where ql is the density difference between the solid and the liquid
phases, and j is known as the capillary constant, or capillary length.

In order to model such interactions it is necessary to solve the
Young–Laplace (YL) equation for capillary forces in the presence of
a curved liquid-vapor interface. The pressure differential across the
liquid-gas interface, is defined by the shape of the meniscus. It is
commonplace to assume the shape of the meniscus is described
by a solid of revolution [21]. While numerical solutions for the YL
equation for a wide variety of revolution surfaces are known, more
often than not, an equation based on a toroidal shape is imple-
mented [7,22,23]. Based on this approach, in order to perform an
axially oriented force balance, first a system in equilibrium is defined
(Fig. 1). Then, making use of the surfaces of revolution to calculate the
pressure differential across the liquid–gas interface according to YL,
one employs the theories of capillarity and lubrication to calculate
the total cohesive force [24,25].

The work discussed herein follows the procedure described by
Pitois et al. for the rupture energy of a pendular liquid bridge [24].
The simplified dimensionless expression derived for the capillary
force contribution takes the form

F∗
cap =

Fcap

sR
= 2p cos0fv, (2)

with,

fv = 1 −
(

1 +
(2V∗)
(pD∗2)

) −1
2

, (3)

Fig. 1. Sketch of a liquid bridge formed between two spheres. P1 and P2 are planes of
symmetry.

where D is the distance between the two solid surfaces, s is the fluid
surface tension, and 0 is the solid-liquid wetting angle. The star sym-
bol (∗) denotes the dimensionless form of an expression. The length
scale to write dimensionless parameters is the radius of the sphere R,
such that V∗ = V/R3, D∗ = D/R. Similarly, we use as the force scale
sR (see Eq. (2)).

1.2. Viscous forces

An expression for the viscous force contributions to granular sys-
tems was developed by Ennis et al. based on a derivation of the
Reynolds equation to describe thin film behavior [7]. The function
revealed how the contribution of lubrication forces to the total rup-
ture force becomes increasingly important for high viscosity fluids.
While the objective of the current work is focused on low viscosity
fluids only, we have implemented the viscous contribution as part of
the computational model for completion. The viscous contribution,
in its dimensionless form, can be written as:

F∗
visc =

3
2
p

Ca

D∗ fv2 (4)

where, Ca is the capillary number defined as Ca = ls/a, and l is the
viscosity of the fluid. It follows that the total (dynamic) force is the
sum of the capillary and viscous terms. A relationship between the
liquid bridge volume, the liquid–solid contact angle and the quasi-
static rupture distance, was presented by Lian et al. [22] for liquid
volumes where the effect of gravity can be neglected. Their rupture
distance can be written as:

D∗
rupt �

(
1 +

0

2

)
V∗1/3. (5)

The total liquid bridge force contribution can then be expressed as:

F∗
tot = 2p cos0fv +

3
2
p

Ca

D∗ f
2
v (6)

Key contributors to viscous forces, such as wetting angles, and
stability on curved surfaces have become areas of independent stud-
ies [26–28]. Results indicated that minimal shifts in the shape of
the meniscus had a significant impact on the evolution and rup-
ture of the bridge. The present work will be concerned with steady
state, non-thermodynamic equilibrium, and will assume the bridge
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maintains a constant mean-curvature. Adams et al. [29] present a
study on mapping the influence of gravitational forces for the liq-
uid binding of solid spheres. The Bond number (Bo) – defined as
Bo = Dqgd2/s where d is the characteristic length – is used to quan-
tify the gravitational distortion for a free liquid droplet. It serves as a
characterization parameter when a scaling factor – which is a func-
tion of the liquid bridge volume (V) – is introduced. The modified
Bond number is defined as V∗Bo and was used in Ref.[29] to predict
the influence of gravitational forces. In this work, Adams et al. iden-
tified systems that have V∗Bo < 0.01 as being essentially gravity
free, while systems in the range 0.01 < V∗Bo < 0.015 are deemed
transitional and those with V∗Bo > 0.015 are the considered to be
gravity controlled systems (that is, they are systems in which the
gravity component plays a significant role in the meniscus evolution
and subsequent bridge rupture). For axisymmetric pendular rings
between a sphere with radius R and a flat surface, the Bond num-
ber is expressed as Bo = DqgR2/s where the characteristic length
is the particle radius. For while for a liquid bridge between identi-
cal spheres, on the other hand, the Bond number can be expressed in
terms of the liquid volume (V), as:

Bo = DqgV/Rs. (7)

When the largest dimension of a sessile drop exceeds j the gravita-
tional effects become significant, and the straining of a liquid bridge
(between two spheres) produces a decrease in the liquid filling angle
(b) of the top sphere as separation increases (see Fig. 1) until even-
tually the bridge becomes unstable. For these cases, Adams et al.
suggest a modified rupture criterion of the form

D∗
rupt � (1 − 0.48V∗Bo)V∗1/3. (8)

2. Materials & methods

Rupture tests were performed using acrylic beads of 2 mm in
diameter. Ethylene-glycol (EG) was selected as the fluid to minimize
evaporation at ambient conditions (refer to Table 1 for relevant fluid
properties). Different fluid volumes were tested in order to describe
the relationship between liquid volume and rupture behavior in the
pendular and capillary regimes.

2.1. Measurement of micromechanical forces in an axially strained
liquid bridge

To measure the rupture forces of liquid binding networks, a
micro-mechanical force microscope was constructed, which con-
sists of a (Philtec) fiberoptic sensor, a stainless-steel cantilever and
a moving stage. Data is collected and interpreted using two essen-
tial components: (1) a multi-purpose texture analyzer (Brookfield
Engineering), and (2) a DMS optical displacement sensor. The two
devices are coupled via a stainless-steel cantilever (thickness=
0.007 inches), see Fig. 2. The fiberoptic sensor can be programmed to

Table 1
Properties for ethylene glycol at 20 ◦ C.

Property Value Units

Molar mass 62.07 g/mol
Density 1.11 g/cm3

Viscosity 0.015 Pa s
Surface tension 0.048 N/m

Fig. 2. Micromechanical force microscope: Brookfield texture analyzer casing,
stainless-steel retractible cantilever, optical displacement sensor.

translate the reflectivity measurement to a distance and is calibrated
in-situ. The reflectivity itself is a function of the cantilever properties
as well as the finished surface.

The texture analyzer (TA) holds the stage for the static bottom
particle(s), as well as the retractable shaft, which is fitted with a
custom stainless-steel cantilever. A retracting particle – identical to
the stationary one(s) – is fixed to the underside of the distal end of
the cantilever. This sphere cantilever unit is the sole mobile element
in this setup, which simultaneously imparts axial strain on liquid
bridges and measures the force between the particles within the sys-
tem. Directly above and parallel to the cantilever is an arm which
holds the optical displacement sensor. As the shaft is raised, liquid
forces operating on the retracting sphere bend the cantilever from its
resting position. As the distance between the cantilever and the opti-
cal sensor changes, the reflectivity of the cantilever beam is altered
and this change is calibrated to yield a strain (length). Based on the
measured bending modulus of the cantilever, this strain is converted
to a force. The choice of cantilever thickness is determined via trial-
and-error in which different thicknesses impact the accuracy of force
measurement (due primarily to a changing signal-to-noise ratio).
In practice, we base our selection of cantilever on a calibration of
the strain to force conversion over the entire range of interest. The
particle, cantilever and sensor configuration is displayed in Fig. 2.

The retraction velocity employed must ensure slow displacement
of the cantilever such that the rupture is considered quasi-static. The
TA device allows setting the shaft displacement at 10 lm/s, a veloc-
ity slow enough to capture the static rupture as indicated in Fig. 4.
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The optical sensor software keeps a real-time record of the reflectiv-
ity as well as the distance between the sensor tip and the cantilever
surface. Having a set, constant shaft-speed allows for the straight-
forward calculation of the distance displaced in time. A qualitative
analysis of the primary experimental measurements is performed in
order to validate that the shaft operating velocity used in this work
is slow enough to approximate quasi-static operation. The rupture of
a liquid bridge under dynamic conditions is beyond the scope of the
current work.

Making use of Eqs. (1) and 5, inserting the corresponding val-
ues for gravity and EG properties (i.e. density, surface tension, see
Table 1), we calculate the rupture distance and relate it to the parti-
cle volume proposed by Lian et al. [22]. A gravity free liquid bridge
corresponds to effective volumes where V*1/3 < j, following the
rationale presented in Eq. (1) [1]. Therefore, for the particles used
in this study the maximum volume allowable in order to correctly
neglect gravitational forces is ≈0.5 lL. This calculated volume high-
lights the importance of operating with small particles. Operating
with liquid volumes above 0.5 lL could give rise to non-negligible
gravitational forces [22].

2.2. Experimental methodology

Each run is initiated in the same manner; a drop of volume V is
carefully dispensed with a syringe on top of the bottom sphere(s),
which remain static. The cantilever sphere is then slowly brought
into contact first with the liquid drop(s) then with the opposing par-
ticle surface(s). After contact with the drop(s), the liquid is displaced
to the surface surrounding the contact spot(s). The instant the top
bead starts retracting by action of the shaft, the fluid will make its
way into the newly available gap and produce the peak force reading
in the force distance diagram. In the case of three-particle interac-
tions, drops of EG – comprised of varying volumes – are applied to
the top surfaces of each static bead, such that when the cantilever
sphere is lowered, a liquid bridge conjoins all particles (either with
one large capillary bridge or two (separate) pendular bridges). As
before, prior to the start of each trial, the top and bottom beads are
positioned in direct contact.

The data is herein presented in dimensionless terms, unless
stated otherwise. Terms will be made dimensionless by using the
particle radius, and surface tension of the fluid, ethylene glycol (EG).

3. Results and analysis

In the interest of verifying the accuracy of the measurements
recorded by the micro-mechanical force microscope, initial tests
were aimed at validating the experimental methodology. Accord-
ingly, the rupture force for a single pendular liquid bridge was
measured for a sphere-plane configuration. Fig. 4 presents the ten-
sile strength behavior between a glass plate and a sphere measured
experimentally and compared to the corresponding theoretical func-
tion as a function of the separation between particles D. For all
force curves presented herein, the last point plotted represents the
maximum separation achieved before rupture occurred.

The theoretical curves shown in Fig. 4 were plotted following the
analysis presented by Pitois et al. which calculates the quasi-static
adhesive force for a constant liquid bridge volume with pinned con-
tact points (refer to Eqs. (2) and 4; [25]). The fluid properties of EG
were used in the theoretical calculations. The total force data appears
to lie on the same curve as the capillary force equation (Fig. 3), which
supports that capillary, not viscous, forces dominate in this system.
Throughout the range of particle separation the measured data falls
within two standard deviations (based on five independent trials)
from the theoretical curve. The agreement observed between the

Fig. 3. Image of a pendular liquid bridge between two spheres. The top sphere is
attached to the cantilever and the bottom sphere is held static. Straining of the liquid
bridge is a result of the upwards movement of the top sphere at constant speed.

measured and theoretical curves lends validity to the assumption
that our experimental setup accurately approximates static opera-
tion. It is accepted from here on that measurements taken employing
this methodology and operational parameters correspond to quasi-
static behavior of the liquid system and the term will be omitted for
the sake of brevity.

In addition to this, for the widely studied plate and sphere system,
the rupture distance obtained experimentally follows the relation
predicted by Lian et al. [22], Eq. (5). The selection of EG as the fluid
has the advantage of displaying contact angles close to zero, there-
fore assuming 0 = 0 for all systems the above expression reduces to

D̃rupt ≈ V∗1/3 (9)

which underestimates the rupture distance observed in Fig. 4 by 11%.

Fig. 4. Quasi-static force between an acrylic sphere and glass plane forming a pendu-
lar liquid bridge measured experimentally compared with the calculated theoretical
values for F∗

cap (Eq. (2)), and F∗
tot (Eq. (6)) as described by Pitois et al. The fluid used is

ethylene glycol.
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Table 2
Properties for ethylene glycol at 20 ◦ C.

Target V∗ V∗Bo V*1/3 D∗
rup (gravitational mapping)

0.25 0.057 0.63 0.63
0.50 0.11 0.79 0.75
0.75 0.17 0.90 0.83
1.0 0.23 1.0 0.89
2.0 0.45 1.3 0.98

3.1. Liquid bridges between two particles

Calculating the modified Bo number suggests that only dimen-
sionless volumes above one (1) will exhibit gravity effects that affect
the draining mechanism. Here, our use of the term draining mecha-
nism refers to the observed retraction and redistribution of fluid as
the liquid bridge is stretched (and ultimately ruptured). In the more
simple particle-wall or 2-particle systems the draining mechanism is
the same for all liquid volumes, being characterized by the formation
of a (thinning) bridge neck at approximately h = S/2 as stretching
occurs. When rupture occurs, the neck region breaks and there are
two resulting droplets of similar volumes that remain at the contact
point of both the top and bottom particle. For more complex systems
with three particles and multiple liquid bridges the draining mecha-
nism is dependent on the degree of symmetry of the initial condition,
see Fig. 7. Table 2 presents values of liquid volume that are used in
the experimental trials described in this section. According to the
V∗Bo values calculated, we expect the liquid volumes 0.5 ≤ V∗ ≤ 0.75
to be in the transitional regime, where there is a significant decrease
in the rupture distance and change in the force by half of the bridge
weight. Similarly, for volumes where V∗ ≥ 0.75, we anticipate being
in the gravity controlled regime. The expected rupture distances are
also presented in the table based on Eqs. (9) or 8 (according to the
expected gravitational regime).

According to the modified rupture distance approximation pro-
posed by Adams et al. the gravitational effects reduce the rupture
distance as much as 20% for the larger liquid volumes dispensed.

In order to observe the sensitivity of the measurements, the
results for three characteristic runs are plotted for each (liquid vol-
ume) condition. The two-particle bridge rupture results presented in
Fig. 5 are further supported by other indicators reported in literature.
Most notably, the maximum force is about half of the sphere-plane
rupture force [1], for the same liquid volume.

The measured tensile force of the liquid bridge is in accordance
with theoretical values presented by Willett et al. [17] where the
maximum capillary force is considered insensitive to the liquid vol-
ume for pendular bridges, without gravity effects. In addition to
this, Willet et al. reported rupture distances being overestimated by
Eq. (5), and suggested an alternate best-fit solution of the form:

D∗
rupt =

(
1 +

0

2

)(
V∗1/3 +

V∗2/3

10
.

)
(10)

Results presented in Fig. 5 also support this observation, as the
expected rupture distances are underestimated by Eqs. (9) and 8,
whereas the modified expression presented by Willet et al. describes
accurately the results presented for two particles.

3.2. Three particle system and capillary liquid bridges

When testing a three-particle set-up, two different configurations
were used: one simulating a high solid fraction — where particles are
closer together; and one simulating a low solid fraction — where the
stationary particles are separated. A setup with a center-to-center
distance between the two bottom spheres of d∗ = d/R = 2.5 was
chosen as the high solid fraction condition, to test a triple contact
starting point. The initial condition for the force measurement is
when the drop is in contact with all three spheres. The results for
three different effective liquid volumes are presented in Fig. 6.

Contrary to the experimental results presented in Murase et al.
[12] the observed trend for the force of a single liquid bridge in con-
tact with three spheres (Fig. 6) does not result in the same maximum

Fig. 5. A) Experimentally measured capillary force versus separation curves for an axially strained pendular liquid bridge formed between two identical acrylic spheres
(R = 1 mm). Three runs for each corresponding liquid volume (V∗ = 0.25, V∗ = 0.50) of ethylene glycol are presented. B) Picture liquid bridge of volume V∗ = 0.25. C)
Picture liquid bridge of volume V∗ = 0.50.
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Fig. 6. A) Measured liquid bridge force for a single axially strained bridge in contact with three identical acrylic spheres. Three runs are plotted for each of the liquid volumes
used (V∗ = 0.25, V∗ = 1.0). The center-to-center distance for the bottom spheres is d∗ = 2.5. B) Picture liquid bridge V∗ = 0.25. C) Picture liquid bridge V∗ = 1.0.

capillary force as it does for two spheres (Fig. 5). In fact, the maxi-
mum measured force is higher when the liquid bridge is stretched
over three particles, where we obtain a value comparable with the
maximum force for a liquid bridge between a sphere and a plane. This
can be explained by the fact that the liquid volume distributes among
the two bottom spheres creating a meniscus with a shape closer to
that formed between a sphere and a plane.

The rupture distance, on the other hand, is reduced by about 20%
for the gravity-free volume of V∗ = 0.25, and is roughly half the
expected length for the capillary saturation volume of V∗ = 1.0, indi-
cating that rupture distance approximations are only applicable for
pendular liquid bridges.

We should note that, for capillary saturation volumes, imprecise
draining mechanisms were observed for some of the runs. During
these runs the liquid meniscus shifts forming a two-particle bridge
between the cantilever sphere and only one of the static beads. In the
most frequently seen draining mechanism, a single bridge forms as it
does between two spheres, yet the neck of the meniscus forms closer
to the top sphere allowing the majority of the volume to be balanced
between the bottom two (see Fig. 7).

The second configuration tested was that mimicking a low solid
fraction particle bed, meaning there is a greater gap between adja-
cent spheres. Again, two drops are dispensed – one above each of
the bottom spheres – which now lay at a measured center-to-center
distance of d∗ = 3.2, Fig. 8B and C. The cantilever is lowered until
the top sphere makes contact with the two bottom spheres without
allowing the two drops to coalesce. For these cases the liquid volume
reported corresponds to the liquid volume per bridge, meaning the
total liquid volume of the system is twice as much.

The maximum force for two liquid bridges held in a three-
particle configuration presents two noteworthy characteristics. First,
the maximum force is larger than that of a single liquid bridge held
between two spheres. A way to understand this is to think of two
springs in parallel. Two identical springs in parallel exert a force that
is effectively twice the force of a single bridge, Fig. 9A; however,
when these springs are inclined at an angle (h) the force is reduced
by a factor of sinh, as in Fig. 9B. For the configuration used in our
experimental trials the true angle between the particle centers is
approximately h=50◦; however, using this correction overestimates
the degree to which the maximum bridge force increases, perhaps

Fig. 7. Comparison of the two primary draining behavior observed for a single bridge between three identical spheres. Left: Axially strained single bridge where the neck of the
meniscus is located closer to the top sphere. Right: Asymmetrical draining and rupture of the meniscus.
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Fig. 8. A) Measured capillary force between for two axially strained liquid bridges formed between three identical spheres. Two separate drops are initially placed on top of each
of the bottom spheres. Three runs are plotted for each of the liquid volumes used (V∗ = 0.25, V∗ = 0.50, and V∗ = 0.75). The center-to-center separation between the bottom
particles is d∗ = 3.2. B) Picture liquid bridge V∗ = 0.25. C) Picture liquid bridge V∗ = 0.50. D) Picture liquid bridge V∗ = 0.75.

due to interactions between the wetted contact spots on the cen-
tral particles. Second, the maximum force is seen to increase with

Fig. 9. Parallel between the combined effect of two springs in parallel and two liquid
bridges held between a three particle unit. A) Shows to springs stretched normal to
the surface B) Two springs stretched at an angle h with respect to the surface.

increased liquid volume, despite the presence of pendular bridges,
ostensibly in contrast to the findings of Willett et al. [17] (and our
results in Fig. 5). We believe that this can be explained as a conse-
quence of two factors: as the liquid volume increases, the effective
angle observed between the bridges decreases (thus the factor of sinh
increases); additionally, the increased liquid volume is large enough
to set our results into the transitional gravitational regime (where
liquid volume is expected to affect the maximum force observed).

The rupture distance for this case is similar to that of the two-
particle configuration, and is approximated to a good degree by
Eq. (10) for V∗ = 0.25 and V∗ = 0.5. For V∗ = 0.75 the rupture
distance is better predicted by the modified rupture proposed by
Adams et al., for liquid bridges in the transitional regime, indicating
the latent effect of gravitational forces for this volume.

Finally in Fig. 10, we compare the rupture force for a dispensed
volume of V∗ = 2.0 distributed among two or three particles. Inter-
estingly, for these large liquid volumes we still don’t perceive a
significant reduction of the maximum capillary force due to gravita-
tional effects. They do, however, exhibit a reduction in the rupture
distance that is more significant for the three-particle system than
it is for the two-particle configuration. In addition to this, the max-
imum force is comparable between the close-packed three-particle
and the plate-sphere configuration. This can be explained by observ-
ing the meniscus shape for both systems, where a single drop in
contact with three spheres creates a meniscus geometry that more
closely resembles that formed between a sphere and plate. From a
qualitative standpoint, our results are also in agreement with Urso et
al. [11] in that a pendular configuration will allow for a larger rup-
ture distance than the corresponding capillary configuration, while
the latter has a larger maximum binding force.

4. Summary and conclusions

In the present study, we measure the quasi-static rupture force
of pendular and capillary liquid bridges by using a micro-mechanical
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Fig. 10. A) Rupture force for a dispensed liquid volume V∗ = 2.0 in a 2 sphere and 3 sphere setup. The three-particle configuration here corresponds to the low solid fraction
with d∗ = 3.2. Three runs are plotted for the two and three particle configuration. B) Picture of liquid bridge (V∗ = 2.0) held between two particles. C) Picture of liquid bridge
(V∗ = 2.0) held between three particles.

force microscope comprised of a Brookfield TA and a fiber optic sen-
sor. We find that the maximum tensile energy of capillary liquid
bridges varies with drop volume, contact angle and bridging/draining
mechanism. In particular the degree of symmetry of the initial con-
dition was found to have a significant effect on the contact angle,
the bridging/draining mechanism and ultimately the maximum liq-
uid volume which forms a stable liquid bridge. To our knowledge,
this observation is reported here for the first time.

As another unique focus of the present work, we examine the
impact of interparticle spacing on the strength of bridge force net-
works. We note that capillary liquid bridges are capable of forming
strong binding networks given a close packed granular system, but
that these networks significantly decrease in strength as the par-
ticle spacing grows (and the same saturation level now leads to
individual, pendular bridges). These observed trends in F∗ suggest
that closely packed granular systems could display a higher cohesion
effect than what would be expected based on two-particle system
theory. Observations presented here indicate an increase of any-
where between 28 and 67% for F∗ when the liquid bridge extends
between three spheres when compared to the two sphere system
depending on the proximity of the particles and the liquid volume.
While this effect needs to be studied further it is our hypothesis that
this is the result of the meniscus geometry. For closely packed gran-
ules and high fluid volumes, the base spheres could approximate
the effect of a bottom flat surface resulting in a net increase in the
maximum force. This hypothesis could be validated by measuring
liquid bridge forces formed between planes of spheres with varying
packing fractions.
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