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CTL process



Need for Alternative Feedstocks for Jet Fuels

• Increasing demand and limited supply of petroleum crude

− 500 million barrels per year U.S. demand for jet fuel

• Secure supply of jet fuel is a priority of the United States

− Large U.S. coal reserves available and easily accessible

− Coal can be easily stored and stocks can be drawn on in emergencies

• Greenhouse gas (GHG) emission reduction requirements 

are driving consideration of biomass as a feedstock

− Due to the dispersed nature and limited renewal rate of biomass, options 

are being considered for hybrid processes using coal plus biomass
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Advanced Technologies for Alternative Jet Fuels

• Fischer-Tropsch (FT) technology 

− Gasification of coal, biomass, or natural gas, followed by FT synthesis and upgrading

− FT Synthetic Paraffinic Kerosene (FT-SPK) and FT Synthetic Paraffinic Kerosene with 

Aromatics (FT-SKA) approved by FAA

− Example Process: Battelle-developed microchannel FT, being commercialized by Velocys

• Lipids-based fuels

− Deoxygenation and upgrading of edible and non-edible oils (lipids); Hydroprocessed

Esters and Fatty Acids (HEFA) approved by FAA; paraffinic

− Example Process: Catalytic Hydrothermolysis (CH) of lipids to introduce aromatics; under 

development by ARA (ReadiJet)

• Carbohydrate-based fuels

− Conversion to sugars followed by fermentation and then conversion to jet fuels; Direct 

Sugar to Hydrocarbons (DSHC) and Alcohol to Jet (ATJ) approved by FAA
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Alternative Jet Fuels Testing

• Battelle has been working with the U.S. Air Force and UDRI for the last 10 

years to generate small quantities of alternative jet fuels for characterization

• Battelle has designed, built, and operated a 1 barrel/day facility called     

Assured Aerospace Fuels Research Facility (AAFRF); tested on FT and

bio-based intermediates
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AAFRF SPK Produced from FT Wax
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AAFRF SPK properties 

are nearly identical to 

other jet fuels



Some Shortcomings of Alternative

Jet Fuels Technology

• Most products are paraffinic in 

composition, but a minimum 

of 8% aromatics are currently 

required for Jet-A fuels

− The jet fuel fraction is C8 to C16 

paraffins; blended with

alternative sources of 

aromatics

• Most technologies produce 

only about 30% in jet fuel 

range; rest is diesel remnants 

or naptha
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Direct Coal-to Liquids (CTL) for Jet Fuel

• Direct CTL Technology Options

− Conventional, three-phase hydroliquefaction

− Two-stage liquefaction using hydrogen-donor solvents

− Coal-tar distillate/petroleum cycle-oil co-processing (PennState)

• Common concerns of direct CTL

− While more thermally efficient than indirect CTL, current direct CTL is still 

inefficient, costly, and generates excessive amounts of GHG emissions

− Provides far more aromatics than the minimum 8% desired in jet fuel

− Complicated design and operation to maintain the proper solvent 

properties and balance

− Requires molecular hydrogen (H2); uses it inefficiently

− Process is economical at larger (>5,000 tons/day of coal) scale

8



A New Technology for Direct Coal Liquefaction

• Battelle concept for using biomass-derived solvents for coal liquefaction

- Provides much more hydrogen transfer than ~0.3% required to dissolve coal

(Chauhan, et.al., “Short Residence Time Coal Liquefaction, ACS Symposium 

Series, No. 139; 1980)

• Radically different from previously researched technologies

- Solvent Refined Coal II process using coal-derived solvents

- Exxon Donor Solvent process using tetralin as hydrogen donor solvent

- PennState effort using cyclic petroleum-derived fractions as solvent

• Once-through use of the hydrogen-donor, biomass-derived solvent 

eliminates need to regenerate and recycle solvent

• Need for molecular H2 for coal liquefaction completely eliminated; 

reduces pressure and eliminates need for on-site H2 generation
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New CTL Technology

• Straightforward integration of proven subsystems with novel liquefaction 

chemistry

• Significant reduction in the capital and operating costs due to mild operating 

conditions (500 vs. 2500 psi)

• Elimination of CCS at coal liquefaction site and minimization of CCS at the 

coal-derived-syncrude-refining site due to reduced H2 demand

• Meet jet fuel specifications with minimal blending with petroleum-based 

components
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Bench-Scale Testing

• Three coals
− West Virginia (WV) Coal; High Volatile A, Bituminous

− Ohio (OH) Coal; High Volatile A, Bituminous

− Wyoming (WY) Coal; Sub-bituminous

• Biomass-Derived Solvents (BS)
− 40 proprietary solvents tested and compared with tetralin

− Some in native form; others pre-treated to improve performance

• Liquefaction Testing
− 0.5L autoclave

− Microreactor (at PennState)

• Catalytic Upgrading
− Two-stage catalytic upgrading

− Multiple microreactors (~20 g catalyst)

− GC-MS, GCXGC, and ultimate analysis
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Typical Batch Liquefaction Processing Conditions

• Run in 0.5L Batch System; Coal Tar Distillate (CTD) as recycle solvent

• Percent liquefied coal calculated based on dried solid; some additionally 

confirmed by ash analysis

• Syncrude quality checked by measuring viscosity at 50°C
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Batch Autoclave Coal Liquefaction 

Screening Results on WV Coal

Solvent
Solvent/Coal

wt% 

Coal Solubilized 

% MAF Coal

Tetralin 60.2 86.6

Bio-solvent #2 (BS-2) 60.1 53.1

BS-3 60.1 86.7

BS-9 60.1 85.5

BS-10 60.0 69.8

BS-14 60.1 56.9

BS-15 60.0 87.9
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Exceeded 80% solubility target; typical H/C ranged from 

0.86 in coal to 1.08 in syncrude











Batch Autoclave Coal Liquefaction 

Screening Results for Ohio Coal

Biomass-Derived 

Solvent
Solvent/Coal  wt%

Coal Solubilized 

%MAF Coal THF 

Soluble

Syncrude Viscosity 

@ 50°C cp

Tetralin 60.0 84.9 325

BS-12 60.3 88.3 96.6

BS-15 60.4 86.2 9.2

BS-15A 24.0 85.1 20.0

BS-19 60.0 84.5 190

BS-19A 23.9 82.0 50.0

BS-19B 18.0 82.2 31.7

BS-23 60.3 85.2 1632

BS-25 60.2 83.6 1330

BS-27B 24.1 88.2 403

BS-32 11.9 85.5 658

BS-40D 24.0 92.1 639
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Solubility Verses Hydrogen Available 

for Transfer
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Bench-Scale Two-Stage 

Hydrotreatment/Hydrogenation

• Stage 1: Heteroatom removal

• Stage 2: Hydrogenation/hydrocracking

• Distillation: Separation into distillate fractions; not performed at bench-scale
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Stage 1 Hydrotreatment

• Objective: Reduce N, S, and O content (LHSV = 0.15 hr-1)

- Achieved 99.7 and 99.9% HDN and HDS after Stage 1

- Residual oxygen reduced to below analysis limit
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Syncrude Feed and Bench-Scale 

Upgrading Products
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Simulated Distillation of Feed and 

Bench-Scale Upgrading Products
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Liquefaction Scaled Up

• Process scaled up at Quantex 

1 ton/day facility (6 tests)

• 400-410°C; 500 psig pressure; 

30-minute treatment time

• Product slurry centrifuged; 

centrate split in a single-stage 

evaporator at ~380°C
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Pilot-Plant Liquefaction Results

• THF-soluble yield of 75-85 wt.% of MAF coal; somewhat lower 

than bench test yield values

• The product slurry was easy to centrifuge, yielding over 40 

wt% solid in centrifuge cake

• The centrate had a viscosity of ~60 cp at 50°C, compared to

~100-260 cp in corresponding bench test

− This is considerably lower than the 325 cp viscosity for bench test with 

twice as much tetralin

− The ash content was reduced to <0.07 wt.%

• Two batches of syncrude were distilled to 500°C cut for scale-

up of upgrading process

− ~80 wt.% was <500°C boiling point

21



Scale-Up of Hydrotreating/Hydrogenation 

of Syncrude

• Scaled-up at 

Intertek’s 20 L/day 

facility

• Two 150 hr. 

continuous runs 

using 2-stage 

catalytic upgrading
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Residual “S” and “N” at Different 

LHSV in Lab & Pilot Scale Reactors   
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Stage1 & 2 Composition by GCxGC-MS 
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Syncrude Feed and Pilot-Scale 

Upgrading Products 
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Simulated Distillation of Feed and Pilot-

Scale Upgrading Products (Run 1)
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Simulated Distillation of Feed and 

Pilot-Scale Upgrading Products (Run 2)
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Biomass-Derived CTL Process Benefits

• Blend of biomass-derived solvents to
− Provide effective hydrogen transfer

− Solubilize products of bond cleavage in coal

− Improve slurry transport

− Provide high H/C precursors for jet fuel and diesel fuel 

• Lower Capital and Operating Costs
− Mild operating conditions for liquefaction

− Order of magnitude smaller liquefaction plants (<1000 tons/day)

− No H2 required for coal liquefaction, eliminating need for on-site generation

− Approximately 30% increase in H/C ratio during liquefaction without using 

H2

− Reduced complexity due to once-through solvent use and no catalyst 

required for liquefaction

− Carbon Capture & Storage (CCS) avoided at liquefaction plant and much 

reduced at syncrude upgrading site due to reduced H2 required
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Conclusions
• The Battelle CTL process employing once-through use of biomass-

derived coal solvent is a unique approach

− Elimination of H2 and regeneration of solvent for liquefaction greatly simplifies 

the process 

− Use of biomass-derived solvents provides a synergistic effect during 

liquefaction, which also reduces the GHG footprint

• Various bituminous and subbituminous coals were successfully 

converted to syncrude using one of many identified biomass-derived 

solvents without the use of H2 or catalyst

• A 2-stage, catalytic hydrotreatment/hydrogenation can convert 60-70% 

of the CTL syncrude to jet fuel and ~100% to diesel fuel

− More than 99.9% of nitrogen and sulfur is removed, and oxygen is reduced 

below detection limit

• Both coal liquefaction and syncrude hydrotreating/hydrogenation

sub-systems have been successfully scaled from Technology Readiness 

Level (TRL) 2-3 to TRL 5 (1 ton/day coal liquefaction and 20 L/day 

upgrading)
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