Presentation

То

International Pittsburgh Coal Conference

The Future of Coal It Is Up To Us!

Steven Winberg

Vice President CONSOL Energy Inc. Research & Development

September 15, 2011

- Summary of CONSOL Energy Inc.
- Impact of EPA Regulations
- > New generation in a low price market
- > Where do we go from here?

- Founded in 1864
- \$5.2 billion revenue, 2nd largest of U.S. coal producers
- Member Fortune 500; S&P 500
- Largest underground coal producer in the U.S.
- Largest natural gas producer in Appalachia
- 11 mining complexes in four states, including the largest underground mines in the world
- 4.4 billion tons of proven and recoverable coal reserves
- 6 natural gas operations across the U.S., spanning 7 states, with a net total of 12,500 wells
- 27 vessels and 620 barges transporting ~19 MTPY
- Baltimore Export Terminal ~12 MTPY
- R&D facility
- Over 9,000 employees

- Summary of CONSOL Energy Inc.
- Impact of EPA Regulations
- > New generation in a low price market
- > Where do we go from here?

Planned Regulations Impacting Coal-Fueled Power Stations

Projected Coal Unit Retirements by 2020

	Conventional Coal Regs (i.e., CSAPR, MACT, 316(b), CCR) Only	Conventional Coal Regs + CO ₂ Uncertainty
NERC	18-44 GW ^a	
M.J. Bradley	25-40 GW	
ICF	40 GW	
Arch Coal	43 GW	
Burns & McDonnell	40-50 GW	
FBR Capital Markets	50 GW	
EEI / ICF	46-56 GW	41-101 GW
Fitch	51 GW	
Black & Veatch	52 GW	
ACCCE / NERA	53 GW	
Brattle Group	50-67 GW	
Wood Mackenzie		60 GW
Credit Suisse	60 GW	
Sanford Bernstein	68 GW	
NETL	78 GW ^a	108 GW ^a
NMA / McIlvaine	32-144 GW	
CERA		75-159 GW

^aNERC and NETL forecasts do not include announced retirements. Hence, the numbers presented here represent the retirements forecasted by these studies, plus 8.3 GW of announced retirements identified in Energy Velocity.

CONSOL Analysis

- Weighted plants by:
 - Capacity Factor
 - > Age
 - Size
 - Heat Rate
- Lowest weighted plants were assumed to be shut down first
- Performed some sensitivity around scrubbed plants

Potential Impact of EPA Regulations on U.S. Coal-Fired Capacity and Coal Demand

HAP MACT Regulation Impact on Pittsburgh #8

Cross States Air Pollution Rule (CSAPR)

	2012 SO ₂ Reductions (%)*	2014 SO ₂ Reductions (%)*	2012 NOx Reductions (%)*	2014 NOx Reductions (%)*
Group 1 States	18%	56%	8%	14%
Group 2 States	24%	30%	(4%)	3%

* Percent Reduction using a 2010 baseline

Group 1 States: IA, IL, IN, KY, MD, MI, MO, NC, NJ, NY, OH, PA, TN, VA, WI, WV Group 2 States: AL, GA, KS, MN, NE, SC, TX

Summary Thoughts on EPA Regulations

- Clearly need relief on HAP Rule NSPS
- Need an extended compliance schedule
- > EPA needs to clean-up data errors on HAP rule
- Significant job creation opportunities to install emissions control equipment on remaining coalfueled fleet but only if time to install is allowed
- Opportunities for SO₂, NOx, HAPs, & particulate control technology advances that improve reductions, reduce cost and reduce parasitic load

- Summary of CONSOL Energy Inc.
- Impact of EPA Regulations
- > New generation in a low price market
- > Where do we go from here?

New Plants

Key Assumptions:

- 30 year, current dollar levelized coe;
- 2012 dollars.
- Capital cost component includes owner's costs
- \$1.64/MMBtu coal & \$6.55/MMBtu gas price
- "R&D Progress to Date" cases based on DRAFT Rev 2 of Bituminous Baseline Study
- "2nd Gen IGCC w/CCS" case based on NETL's IGCC Pathway study, upgraded to incorporate more complex Rev 2 Bit. Baseline study costing methodology

Prospects for New Coal Generation

Summary Thoughts on New Generation

- Natural gas will fill the new plant void over the next 10 years
 - Lower capital cost
 - Shorter lead time
 - Easier permitting
 - Less financial risk

- Summary of CONSOL Energy Inc.
- Impact of EPA Regulations
- > New generation in a low price market
- > Where do we go from here?

A Path to Transformational Technologies

IGCC with CCS A Path to Commercialization							
System Components	Baseline		1 st Gueration	2nd Generation		Transf Tech	ormational nnologiies
Coal Feed / Gasifier	IGCC w/o CCS		Jurry Feed	Coal Feed Pump		IGEC	
Oxygen Production			Cryogenic Air Separation	Ion Transport Membrane			
Gas Cleanup			Selexol	Warm Ga	s Cleanup	Catalytic Gasification Chemical Looping ARPA-E/Office of Science Advances	
Power Block			F Class H ₂ Turbine	H Class H ₂ Turbine (2500F TIT)	Advanced H Class H ₂ Turbine (2650F TIT)		
CO ₂ Separation			Selexol	H ₂ Membrane			
Performance	Baseline		1 st Generation	2nd Generation		Trast Test	ormational nnologiies
LCOE (mills/kWh)	109		150	107	102	Safa	conomic and
Capital Cost (\$'s/kW)	2450		3300	2300	2300	Police lo Recolino	
Efficiency (%)	39		33	38	40	Performance	
Availability	80%		80%	85%	90%	reornance	

System Components	Baseline		1 st Generation	2nd Generation	Tran Te	formational hnologiies
			O2 Boiler/Sub-critical	O2 Boiler/USC		
PC Oxy-combustion			Cryogenic	Ion Transport Membrane		
			SOA CO2 Purification	Adv Purification (Integrated Pollution Removal)		
	0 W 100	Α	SOA Compression	Shock Wave	hei	mical Looping
PC Post-combustion	Supercritical PC w/o CCS		PC Boiler/Supercritical	PC Boiler/USC New Plants	ARP. Scier	A-E/Office of Acce Advances
			CC2 Capture (MEA)	Solvents Sorbents Membranes		
			SOA compression	Shock Wave		
Performance	Baseline		1 st Gener tion	2nd Generation	Tran Te	sformational chnologiies
LCOE (mills/kWh)	85		142/151	110	Safe I	Economic and
Capital Cost (\$'s/kW)	2025		3300/3570	2550	Beliable Base	
Efficiency (%)	39		29/28	35 Performance		rformance
Availability	85%		85%	90%	renormance	

Combustion with CCS ... A Path to Commercialization

CCS Technology Deployment Roadmap

Summary Thoughts on where we go from here?

- Focus on component technologies that will
 - 1. Improve efficiency
 - 2. Reduce cost
 - 3. Cut across combustion & gasification technologies
- Continue to push for demonstration funding

And Enjoy Your Time In

Thank you

Pittsburgh