

NATIONAL ENERGY TECHNOLOGY LABORATORY

NETL Emerging Fossil Energy Technologies

Fossil Energy Coal R&D Program

A History of Innovative Solutions

Notable Program Successes

Advanced Pollution Controls

- Installed on 75% of U.S. coal plants
- 1/2 to 1/10 cost of older systems

FGD Scrubbers

Low-NO_x Burners

HAPS & Hg Data

- Quantified HAPS Levels
- Basis for Hg Regulations

Advanced Coal Power Systems

- World's largest CFBC power plant
- Two "super-clean" coal-based IGCCs

Return On Investment from Coal R&D

FE RESEARCH — THE RETURN ON INVESTMENT

\$111 Billion in	1.2 million	25 Million	2 Million	850 Patents	\$1.3 Trillion
Benefits	jobs created	Tons of	Tons of	Fossil	Estimated
(2000-2020)	(2000-2020)	Avoided NOx	Avoided SO ₂	Energy	Health
\$13 return for	Thousands	Emissions	Emissions	Patents	Benefits
every \$1 of Trained invested Engineers and Scientists		Abundant D Promotes Nation	omestic Coal al Energy Security	(1978-2010)	

Office of Fossil Energy

Sources : http://www.americancoalcouncil.org/associations/10586/files/Benefits_of_Investment_in_Clean_Coal_Technology_Bezdek_MSI.pdf, http://kammen.berkeley.edu//margoliskammenEpolicy.pdf, NAS report, Energy Research at DOE, Was it Worth It, pg 180-181, http://da2ec.info/doepatents/index.jsp, http://www.fe.doe.gov/aboutus/FE_ResearchProgram_Brochure_012309.pdf

Tapping Unconventional Natural Gas

- Shale gas contributes 14% of today's domestic natural gas supply; could supply 45% by 2035
 - Employed resource characterization and technology development to match technology to geology to chart a path for resource development
 - NETL programs developed technologies that increased per-well gas-recovery efficiencies, reduced unit development costs, and protect public health and environment.

Coalbed methane recovery rose from <100 Bcf in 1989 to ~2 Tcf in 2009

 Today, coalbed methane accounts for ~8% of U.S. natural gas produced and increases safety by reducing methane concentrations ahead of mining operations

Early Involvement of Public Research Proves Beneficial

The Future of Natural Gas: An Interdisciplinary MIT Study (Interim Report), MIT Energy Initiative, 2010 Energy Research at DOE: Was It Worth It? Energy Efficiency and Fossil Energy Research 1978 to 2000, National Research Council,

Sources: U.S. data from EIA, Annual Energy Outlook 2011; World data from IEA, World Energy Outlook 2010, Current Policies Scenario

* Primarily traditional biomass, wood, and waste.

Pathways to CO₂ Emission Reduction

- Energy efficiency (14 GtCO₂e/yr)¹
 - Vehicles, Buildings, industrial equipment
- Low-carbon energy supply (12 GtCO₂e/yr)
 - Wind, Nuclear, Solar Energy
 - Biofuels for transportation
 - Fossil fuels with Carbon Capture and Storage

Terrestrial carbon (12 GtCO₂e/yr)

- Reforesting, halting deforestation
- CO2 sequestration in soils through changing agricultural practices

Behavioral change (~4 GtCO₂e/yr)

1. CO₂ Reduction opportunities by 2030 from <u>Pathways to a Low-Carbon Economy</u>, McKinsey & Company, 2009.

Office of Fo

It's Not Just About Coal !!!

United States CO₂ Emissions

Mission & Challenges

Develop Technologies and Best Practices That Facilitates Wide Scale Deployment of Coal Based Energy Systems Integrated With Carbon Capture and Storage

- Develop and optimize plant designs & components
- Reduce capture costs
- Validate storage capacity
- Validate storage permanence
- Create private/public partnerships
- Promote infrastructure development
- Put "first of kind" field projects in place
- Develop tools, protocols & best practices

DOE Regional Carbon Sequestration Partnerships

The Challenge:

Sufficient Storage ?

Is Storage Where We Need It ?

The Direction:

- Validate Storage Capacity to +/- 30% Accuracy
- Develop GIS Systems for Source/Sink Matching

Sufficient Storage Capacity Emerging

National Atlas Highlights - 2010

U.S. Emissions: \sim 3.5 GT CO₂/yr from large stationary sources

Oil and Gas Fields

Saline Formations

North American CO₂ Storage Potential (GT)

Conservative
Resource
Assessment

Sink Type	Low	High	
Saline Formations	1650	20,000	
Unmineable Coal Seams	60	117	
Oil and Gas Fields	143	143	

Office of Fossil Energy

Download at http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasII/atlasII.pdf

Unmineable Coal Seams

Hundreds to Thousands of Years Storage Potential

GIS Database – Sources & Sinks

United States & Canada

National Carbon Sequestration Database and Geographical Information System (NATCARB)

The Challenge:

Cost of Carbon Capture ?

The Direction:

- < 10% increase in COE (pre-combustion capture)
- < 35% increase in COE (post- and oxy-combustion)
- Validate ability to capture at least 90% CO₂

CO₂ Capture Applications

CO₂ Capture Deployment Barriers

1. Energy Demand

• 20% to 30% ↓ in power output

2. Cost

- Incremental Capital \$1,500 to \$2,000/kWh
- Increase Cost of Electricity up to 100%

3. Scale-up

- Current capture experience <1,000 TPD
- 550 MWe plant produces 13,000 TPD

Cost Reduction Benefit

Advanced CO₂ Solvents

Solvent R&D Focus

- High CO₂ working capacity
- Optimal ∆Hrxn
- Low heat capacity
- Fast kinetics
- Thermally and chemically stable
- Non-corrosive, environmentally safe

Project Types

- Ionic liquids
- Novel high capacity oligomers
- Potassium carbonate/enzymes
- Phase Change Solvents

2011: Laboratory to 1 Mwe Pilot Scale

2015: 10 – 25 Mwe Pilot Scale

2020: 50+ Mwe Demonstration Scale

Recent progress:

New Solvent Synthesis by GE:

- ✓ 50% increase capacity vs. MEA
- ✓ < 48% increase in COE</p>

Phase change chemical systems shown to reduce regeneration energy relative to MEA by 50%

Advanced CO₂ Sorbents

Advantages

- Low regeneration energy (no water, low heat capacity, low heat of reaction)
- High equilibrium capacity

Challenges

- System design
 - Pressure drop, heat integration, solids transport
- Durability (attrition, chemical stability)

Project Types

- Supported amines (silica, clay)
- Metal zeolites
- Carbon-based
- Alumina
- Sorbent systems development

Sorbent R&D Focus

- High CO₂ loading capacity
- Minimize regeneration energy
- Fast reaction kinetics
- Durable
 - Thermally & chemically stable
- Gas/solid systems
 - Low pressure drop, heat management

2011: Laboratory to 1 Mwe Pilot Scale
2015: 10 – 25 Mwe Pilot Scale
2020: 50+ Mwe Demonstration Scale

Advanced CO₂ Membranes

Membrane Advantages

- Simple operation; no chemical reactions, no moving parts
- Tolerance to contaminants
- Compact, modular \rightarrow small footprint

Advanced Membrane R&D Focus

- High CO₂/N₂ selectivity & permeability
- Durability
 - Chemically (SO₂), thermally
 - Physically
- Membrane systems
 - Process design critical
- Low cost
 - Capital and energy penalty

Challenges

- Low flue gas CO₂ partial pressure
- Particulate matter
- Cost reduction and device scale-up
- Power plant integration

2011: Laboratory to 1 Mwe2015: Large pilot scale 10 - 25 Mwe2020: 50+ Mwe Demonstration Scale

CCSI will develop M&S tools to accelerate the commercialization of CCS

Identify promising concepts Reduce the time for design & troubleshooting Quantify the technical risk, to enable reaching larger scales, earlier Stabilize the cost during commercial deployment

The Challenge:

Permanence & Risk ?

The Direction:

- Develop tools, protocols & best practices
- Verify 99% storage retention

Many Good Analogs For Geological Storage

- Natural CO₂ reservoirs
- Oil and gas reservoirs
- Natural gas storage
- 70 CO₂ EOR projects in U.S.
- 50 acid gas injection sites in North America
- Numerical simulation of geological systems
- Current Large-Scale CO₂ storage projects

"At least 99%+ retention is likely for well selected and managed storage sites"

Security/permanence is expected to be high for CO₂ storage in geologic reservoirs.

"Observations from engineered and natural analogues as well as models suggest that the fraction retained in appropriately selected and managed geological reservoirs is very likely to exceed 99% over 100 years and is likely to exceed 99% over 1,000 years."

Schematic evolution of trapping mechanisms over time (IPCC, 2005)

Schematic profile of environmental risk (Benson, 2007)

Office of Fossil Energy

Multiple trapping mechanisms reduce CO₂ mobility over time

- structural/stratigraphic
- residual
- solubility
- mineralization; sorption

Risk profiles are expected to decline over time

Site characterization, site operations, and monitoring strategies will work to promote storage security (e.g., DOE Best-Practices documents)

Monitoring Technologies & Practices Emerging

National Risk Assessment Partnership

- Overall NRAP goal: To develop and demonstrate a methodology for generating long-term quantitative risk profiles for carbon storage to support widespread commercial deployment.
 - Develop framework and computational tools needed to generate quantitative risk profiles (long-term liability)
 - Use laboratory and field data to fill gaps in the science base as needed to confirm model validity, to reduce uncertainty, and to direct model development
 - Develop risk-based monitoring and mitigation strategy that lowers uncertainty
 and risk

The Challenge:

Field Tests & Infrastructure ?

The Direction:

- Put "first of kind" projects in place
- Develop protocols & Best Practices
- Public outreach & Training

"Commercial" Sequestration Projects

Sleipner Project- Norway

- CO₂ removed from natural gas produced on production platform in North Sea
- Injection into saline reservoir under sea
- Started 1996

Weyburn – Saskatchewan

- EOR project with 50 wells
- Uses CO₂ from coal gasification plant
- Started 2000

In Salah Gas Plant - Algeria

- Injection into saline formation downdip of gas reservoir
- 3 wells
- Started 2004

omce of Fossil Energy

Regional Carbon Sequestration Partnerships

Developing the Infrastructure for Wide-Scale Deployment

Seven Regional Partnerships

400+ distinct organizations, 43 states, 4 Canadian Provinces

- Engage regional, state, and local governments
- Determine regional sequestration benefits
- Baseline region for sources and sinks
- Establish monitoring and verification protocols
- Address regulatory, environmental, and outreach issues
- Validate sequestration technology and infrastructure

Small-Scale Geologic Field Tests

Completed 18 Injections--Over 1.35 tonnes injected

Plateau

Large-Volume Geologic Field Tests

- One injection commenced April 2009
- Remaining injections scheduled 2011-2015

~	Partnership	Geologic Province	Target Injection Volume (tonnes)	
1	Big Sky	Sweetgrass Arch- Duperow Formation	1,000,000	
2	MGSC	Illinois Basin- Mt. Simon Sandstone	1,000,000	
(7)	MRCSP	Michigan Basin- St Peter SS or Niagaran Reef	1,000,000	
4	PCOR	Powder River Basin- Muddy Formation	1,500,000	
5		Alberta Basin- Sulphur Point Formation	1,000,000	
6	SECADD	Interior Salt Basin- Tuscaloosa Formation	>2,000,000	
7	SECARD	Interior Salt Basin- Paluxy Formation	300,000	
8	SWP	Wasatch Plateau- Navajo Sandstone	1,000,000	
9	WESTCARB	Regional Characterization	TBD	

Major CCS Demonstration Projects Locations & Cost Share

CCS Best Practice Manuals

Critical Requirement For Significant Wide Scale Deployment

the ENERGY lab BEST PRACTICES for: Monitoring, Verification, and Accounting of CO, Stored in Deep	Best Practices Manual	Version 1 (Phase II)	Version 2 (Phase III)	Final Guidelines (Post Injection)
Geológic Formations	Monitoring, Verification and Accounting	2009 2012	2016	2020
	Public Outreach and Education	2009	2016	2020
BEST PRACTICES for:	Site Characterization	2010	2016	2020
ANTION	Geologic Storage Formation Classification	2010	2016	2020
	**Simulation and Risk Assessment	2010	2016	2020
	**Well Construction, Operations and Completion	2011	2016	2020
NATIONAL ENERGY TECHNOLOGY LABORATORY	Terrestrial	2010	2016 – Pha	Post MVA ase III

**Regulatory Issues will be addressed within various Manuals

Office of Fossil Energy

http://www.netl.doe.gov/technologies/carbon_seq/refshelf/refshelf.html

DOE's Global Collaborations

Project Location	Operations	Reservoir Storage Type	Operator/Partner	DOE Contribution	
North America, Canada Saskatchewan Weyburn-Midale	2.8 MMt CO ₂ /yr commercial 2000	oil field carbonate EOR	Cenovus, Apache, Petroleum Technology Research Centre	DOE is supporting U.S. scientists test multiple monitoring and simulation technologies.	
North America, Canada, Alberta Zama oil field	25,000 metric tons CO ₂ /yr CO ₂ /acid gas demo	oil field carbonate EOR	Apache (RCSP)	Supporting the PCOR Partnership to conduct monitoring and reservoir modeling of CO_2 injection into pinnacle reef.	
North America, Canada, British Columbia Fort Nelson	> 1 MMt CO ₂ /yr, 1.8 MMt acid gas/yr large-scale demo	saline carbonate formation	Spectra Energy (RCSP)	Supporting PCOR Partnership to conduct monitoring and reservoir modeling studies.	
Europe, North Sea, Norway <mark>Sleipne</mark> r	1 MMt CO ₂ /yr commercial 1996	saline marine sandstone	StatoilHydro	Supporting the Scripps Institute of Oceanography which is conducting time-lapse gravity surveys.	
Europe, North Sea, Norway Snøhvit CO ₂ Storage	700,000 metric tons CO ₂ /yr commercial 2008	saline marine sandstone	StatoilHydro	Supporting LBNL to simulate geo-mechanical conditions of the reservoir and caprock.	
Europe, Germany CO ₂ SINK, Ketzin	60,000 metric tons CO ₂ demo 2008	saline sandstone	GeoForschungsZentrum, Potsdam(GFZ)	Supported LBNL to deploy downhole monitoring technology based on thermal perturbation sensors.	
Iceland CarbFix	celand arbFix CO2 stream from Hellisheidi geothermal power plant saline basalt Reykjavik Ene		Reykjavik Energy	Supporting Columbia University Lamont-Doherty Earth Observatory to test tracer methods to assess trapping mechanisms in basalt formations.	
Africa, Algeria In Salah gas	1 MMt CO ₂ /yr commercial 2004	gas field sandstone	BP, Sonatrach, StatoilHydro	Supporting LLNL and LBNL to test field and remote sensing monitoring technologies and modeling geomechanical and geochemical reservoir processes.	
Australia, Victoria Otway Basin	65,000 metric tons CO ₂ Stage I 2008	gas field and saline sandstone	CO2CRC	Supporting scientists at LBNL to test multiple monitoring technologies at depleted gas field and saline formation.	
Asia, China Ordos Basin	100,000 metric tons CO ₂ /yr model phase	Ordos Basin	Shenhua Coal	Supporting West Virginia University and LLNL to assess capacity for storage, and simulating hydrogeologic and geochemical reservoir conditions.	

For Additional Information

Anthony Cugini 412-386-6023 –or– 304-285-4684 anthony.cugini@netl.doe.gov

www.netl.doe.gov

Office of Fossil Energy www.fe.doe.gov

