Pitt | Swanson Engineering

The Chemical and Petroleum Engineering department at the University of Pittsburgh Swanson School of Engineering was established in 1910, making it the first department for petroleum engineering in the world. Today, our department has over 40 expert faculty (tenure/tenure-stream/joint/adjunct), a host of dedicated staff, more than 20 state-of-the-art laboratories and learning centers, and education programs that enrich with strong fundamentals and hands-on experience.

Chemical engineering is concerned with processes in which matter and energy undergo change. The range of concerns is so broad that the chemical engineering graduate is prepared for a variety of interesting and challenging employment opportunities.

Chemical engineers with strong background in sciences are found in management, design, operations, and research. Chemical engineers are employed in almost all industries, including food, polymers, chemicals, pharmaceutical, petroleum, medical, materials, and electronics. Since solutions to energy, environmental, and food problems must surely involve chemical changes, there will be continued demands for chemical engineers in the future.

Sep
18
2017

Scratching Below the Surface

Chemical & Petroleum

Posted with permission of Pittwire. View the original article here. Many people have suffered through an itchy skin rash after a brush with poison oak, wearing jewelry containing nickel or using latex gloves. That rash is one of the several symptoms caused by allergic contact dermatitis (ACD), a common skin condition that also causes blistering, ulcers and cracking skin, among other ailments. Topical creams and ointments can relieve symptoms, but they do not treat the underlying causes. Researchers at the University of Pittsburgh may have hit upon a better treatment. In a paper recently published in the Journal of Controlled Release, Steven Little and colleagues propose that the underlying causes of ACD can be remedied by manipulating T cells, which control inflammation. “The technology here coaxes the body’s own cells to address inflammation that leads to these kinds of diseases,” said Little, chair of Pitt’s Department of Chemical and Petroleum Engineering. “We are essentially using strategies like this to convince the immune system into not attacking something that it would normally attack. When we administer our treatment at the same time as the allergen, it teaches the body to not become inflamed to that specific thing.” The researchers manipulated cells to release proteins, immune system molecules and other compounds to suppress destructive hypersensitivity responses to allergens that cause skin rashes, effectively preventing or reversing ACD in previously sensitized mice. Little said other researchers are trying to solve this problem by administering drugs that suppress the immune system, but side effects are a concern. Another treatment method under investigation takes cells out of the body, manipulates them and then reinjects them. “This is really tough, because it is inefficient and we don’t know what happens to the cells when you put them back into the body,” Little said. “The FDA is wary of these kinds of things.” The difference between these methods and the one proposed by Little and his colleagues is that it appears possible to induce the body’s own cells to treat the disease by manipulating cells inside the body with proteins that promote T cells to divide and react to allergens more quickly and aggressively to better control inflammation. Researchers also said this approach to what is known as in vivo T cell induction could also aid in the development of new therapies for transplant rejection and autoimmune diseases. “It has the potential to do all of this without the side effects you’d normally see,” Little said. ###
Amerigo Allegretto, Communications Specialist, University of Pittsburgh
Sep
18
2017

In Search of a Greener Cleaner

Chemical & Petroleum

PITTSBURGH (September 18, 2017) … Molecular chelating agents are used in many areas ranging from laundry detergents to paper pulp processing to precious metal refining. However, some chelating agents, especially the most effective ones, do not degrade in nature and may pollute the environment. With support from the National Science Foundation (NSF), researchers at the University of Pittsburgh Swanson School of Engineering are developing machine learning procedures to discover new chelating agents that are both effective and degradable.Dr. John Keith, a Richard King Mellon Faculty Fellow in Energy and assistant professor of chemical engineering at Pitt, is principal investigator; and Dr. Eric Beckman, Distinguished Service Professor of chemical engineering and co-director of Pitt’s Mascaro Center for Sustainable Innovation, is co-PI. Their project titled “SusChEM: Machine learning blueprints for greener chelants” will receive $299,999 from the NSF.“Chelating agents are molecules that bind to and isolate metal ions dissolved in water,” explains Dr. Keith. “Cleaning detergents normally don't work well in hard water because of metal ions like magnesium and calcium interfering. That’s why commercial detergents typically include some chelating agents to hold up those metal ions so the rest of the detergent can focus on cleaning.”While chelating agents are valued for their ability to bind strongly to different metal ions, researchers are also factoring how long it takes them to degrade in the environment and their probabilities of being toxic when searching for more effective chelate structures. “Many of the widely used chelating agents we use end up in water runoffs, where they can be somewhat toxic to wildlife and sometimes to people as well,” says Dr. Beckman.Developing new chelating agents so far has relied on trial and error experimentation. Dr. Beckman continues, “In the past, folks have tried to create better chelating agents by tweaking existing structures, but whenever that produces something less toxic, the chelating agent winds up being much less effective too. We’re trying a new approach that uses machine learning to look through much larger and more diverse pools of candidate molecules to find those that would be the most useful.” The Pitt research team will use quantum chemistry calculations to develop machine learning methods that can predict new molecules that would be more effective and greener than existing chelating agents. While computational quantum chemistry can be used to screen through a thousand hypothetical chelating agents in a year, machine learning methods based on quantum chemistry could be used to screen through 100,000s of candidates per week. Once the researchers identify promising candidates, they will synthesize and test them in their labs to validate the efficacy of the machine learning process for designing greener chemicals.The results of the research will have a significant impact on a range of topics relevant to environmentally-safe engineering and the control of metals in the environment, including computer-aided design of greener chelating agents used in detergents, treatments of heavy metal poisoning, metal extractions for soil treatments, waste remediation, handling normally occurring radioactive materials from hydraulic fracturing sites, and water purification.“Chelating agents are used in such a wide range of industries, so even a small improvement can have a big impact on sustainability as a whole,” said Dr. Keith. ###
Matt Cichowicz, Communications Writer
Aug
28
2017

Building a Pump without Parts

Chemical & Petroleum

PITTSBURGH (August 28, 2017) … Controlling fluid flow at the micro- and nano-level can enable the development of self-operating microfluidic devices and even small-scale factories that perform chemical synthesis and biomedical assays, as well as drive robotic systems operating in harsh environments. The stumbling block, however, is devising effective ways to regulate the movement of the fluids at such small, confined levels. To find solutions to this challenge, the National Science Foundation has awarded $1.8 million to the University of Pittsburgh’s Swanson School of Engineering, establishing the NSF Center for Chemo-Mechanical Assembly (CCMA). Principal investigator is Anna Balazs, Distinguished Professor of Chemical Engineering and the John A. Swanson Chair of Engineering. The CCMA is established through the Centers for Chemical Innovation (CCI) Program, which supports research centers focused on major, long-term fundamental chemical research challenges. Dr. Balazs explained that while mechanical pumps are traditionally used to drive fluid flow, such systems are not useful when designing micro- and nano-fluidic devices that could operate without external controls or power supplies. Catalytic reactions, however, can serve as “chemical pumps” by creating gradients in chemical concentrations and fluid densities that spontaneously give rise to net flows.“Just as a river current carries a pebble, fluid flows can carry particulates such as nanoparticles and microcapsules. Building upon our previous research at Pitt and partner institutions, we have developed novel tools to enable unprecedented control over fluid flow and particle organization in confined, small-scale environments,” she said. “These “catalytic conveyor belts” enable the design of self-powered, self-sustaining systems that organize particles and are capable of performing complex functions, such as delivering significant amounts of particulates to sensors on surfaces and, thus, allowing highly sensitive studies to be performed both efficiently and rapidly, or fabricating complex microstructures and patterned surfaces in solution. “Most importantly, our research shows that we can do this without the need for mechanical devices, and instead create micro- and nano-systems that harness chemical reactions to drive their performance. In essence, our systems convert chemical energy into mechanical motion, much as our bodies harness nutrients to drive our actions. The CCMA will host an interdisciplinary team with expertise in catalysis, synthetic chemistry, physical chemistry, fluid flow, and modeling.”Potential applications for this research includes the creation of stand-alone microfluidic devices that autonomously perform multi-stage chemical reactions and assays for biomedical applications; automated materials assembly in harsh environments; and small-scale factories that can operate autonomously to build microscale components for use in fine instrumentation and robotic systems. Also as part of the national center program, the NSF award enables Dr. Balazs to engage in STEM workforce development and public outreach. Funding will support graduate and postdoctoral students, especially those from underrepresented populations, as well as public lectures, hands-on traveling exhibits, and museum and science center projects. Dr. Balazs' co-investigators include Todd Emrick, Professor of Polymer Science & Engineering and Director of the NSF Materials Research Science and Engineering Center (MRSEC) on Polymers at the University of Massachusetts-Amherst; Ayusman Sen, Distinguished Professor of Chemistry at The Pennsylvania State University; and Howard Stone, the Donald R. Dixon ’69 and Elizabeth W. Dixon Professor of Mechanical and Aerospace Engineering at Princeton University.CCMA is the Swanson School’s third national NSF center, and one of only five Phase I CCIs awarded this year through a combination of a research grant and a center planning grant. In FY 2020, CCMA and other Phase I CCI’s will compete for Phase II funding at $4 million per year for five years, with a competitive renewal for five additional years. “This center will work on exciting chemistry at the forefront of the field. Researchers will utilize novel approaches to manipulate the behavior of particles using catalytic chemical reactions to drive the self-organization of particles and form useful micro-devices,” said Dr. Angela Wilson, Division Director for the NSF Division of Chemistry. “The fundamental research conducted by this new CCI could enable a new generation of portable biomedical devices, automated materials assembly in harsh environments, and even small-scale ‘factories’ for building microscale instrumentation and robotics components. We look forward to the developments that will ensue from this CCI.” ###

Aug
23
2017

An Eye towards Islets

Chemical & Petroleum

PITTSBURGH (August 23, 2017) … Tiny packets of cells called islets throughout the pancreas allow the organ to produce insulin. Type 1 diabetes – also known as juvenile diabetes – tricks the immune system into destroying these islets. Patients must take insulin daily to maintain blood sugar, or too much sugar will build up in the blood stream and lead to hyperglycemia, diabetic ketoacidosis, and, if left untreated, death. Patients must self-regulate their blood sugar for their entire lives, unless there were some way to restore the pancreatic islets. To explore that potential, the National Science Foundation has funded a multi-university study led by researchers at the University of Pittsburgh Swanson School of Engineering who are investigating the use of human pluripotent stem cells (hPSCs) to engineer pancreatic islets in the lab. A major goal of the research is to develop a method of vascularizing islets in vitro—literally “in glass”—which studies suggest will result in higher viability and enhanced function after the transplant. “This the first attempt to generate in vitro vascularized pancreatic islet organoids from hPSCs,” explains Ipsita Banerjee , associate professor of chemical engineering at Pitt and principal investigator of the study. “Through collaborative efforts, we have developed a method of implanting blood vessel fragments into the islets. By vascularizing the islets before they are transplanted to the body, they are more likely to survive and can begin regulating blood glucose more quickly.” Pancreatic islets have a very high oxygen demand. Once inside the body, they need to connect to the host vessels quickly, otherwise they start dying and lose their ability to regulate blood glucose levels. Researchers began looking for new techniques to speed up vascularization after tests began to show high vascularity ultimately improved the transplantation outcome. In addition to developing vascularized islets inside the lab, the study - “Engineering a functional 3D vascularized islet organoid from pluripotent stem cells” - will use a novel hydrogel system to create a three-dimensional cell culture configuration that mimics the way the body forms pancreatic cells naturally. “The hydrogel is like a scaffold, and it helps to configure the cells in a 3D space,” says Dr. Banerjee. “The status quo is hPSCs randomly arranged in uncontrolled configurations with varying size and structure; however, by using the hydrogel developed by our collaborator at Arizona State, we can create a precise, multicellular architecture called ‘spheroids.’ Unlike a 2D culture grown in a petri dish, islet spheroids grown on the hydrogel look the same as the ones made by the body.” Although Dr. Banerjee’s research will most directly impact cell therapy for diabetics, creating a procedure for developing working islets outside of the body could also serve as a valuable tool for testing the efficacy and toxicity of new drug compounds for pancreatic disease. The general implications of in vitro vascularization of cells show even more promise. “The principles behind pre-designing vascularization before transplantation apply to any type of tissue, not just pancreatic,” Dr. Banerjee says. “Even when donor islets are used for a transplant, a fraction of the islets survive the procedure. We expect the advanced measures we are taking in the lab, before the new cells enter the patient’s body, to have tremendous application to the next generation of regenerative medicine.” Dr. Banerjee’s team of researchers includes Prashant Kumta , professor of bioengineering at Pitt; Kaushal Rege , professor of chemical engineering at Arizona State University; and James Hoying , professor of surgery at the University of Louisville. ### Photo: Dr. Banerjee (right) with PhD Candidate Thomas Richardson
Matt Cichowicz, Communications Writer
Aug
9
2017

Chancellor Gallagher appoints Chemical Engineering Distinguished Professor Anna Balazs to the John A. Swanson Endowed Chair of Engineering

Chemical & Petroleum

PITTSBURGH (August 9, 2017) … Recognizing her contributions to the fields of chemical engineering and computational modeling, the University of Pittsburgh has appointed Anna C. Balazs as the John A. Swanson Chair in Engineering at the Swanson School of Engineering. Chancellor Patrick D. Gallagher made the appointment on the recommendation of Provost Patricia E. Beeson and U.S. Steel Dean of Engineering Gerald D. Holder.“Anna’s appointment to the John A. Swanson Chair in Engineering in the Swanson School of Engineering recognizes and rewards the quality and impact of her work to date, which has earned deep and widespread respect,” said Gallagher. “This designation is well deserved—and one of the highest honors that any university can bestow upon a member of its faculty.” “Anna’s award-winning contributions to her field have been tremendous, and she is one of the most valued and respected members of our faculty,” Dean Holder added. “But most importantly, she has been and continues to be a mentor to so many students and post-doctoral researchers who have been impacted by her innovative research, creativity, and wonderful personality.” Dr. Balazs is also the Distinguished Professor of Chemical Engineering and previously held the Robert v.d. Luft Professor at the Swanson School. She received her B.A. in physics from Bryn Mawr College in 1975 and PhD in materials science from the Massachusetts Institute of Technology in 1981. Her research involves developing theoretical and computational models to capture the behavior of polymeric materials, nanocomposites and multi-component fluids, with funding awarded by the National Science Foundation, Department of Energy, Department of Defense, and the Charles E. Kaufman Foundation.She is a Fellow of the American Physical Society, the Royal Society of Chemistry, and the Materials Research Society, and was a Visiting Fellow at Corpus Christi College, Oxford University. She has served on a number of editorial boards including Macromolecules, Langmuir, Accounts of Chemical Research, and Soft Matter, and currently serves as an Associate Editor for the journal Science Advances. She was Chair of the American Physical Society Division of Polymer Physics in 1999-2000, and received a Special Creativity Award from the National Science Foundation. Her other awards include the Maurice Huggins Memorial Award of the Gordon Research Conference for outstanding contributions to Polymer Science (2003), the Mines Medal from the South Dakota School of Mines (2013), the American Chemical Society Langmuir Lecture Award (2014), and the Royal Society of Chemistry S F Boys-A Rahman Award (2015). Most recently, she was the first woman to receive the prestigious American Physical Society Polymer Physics Prize (2016). ###

Upcoming Events


back
view more