Pitt | Swanson Engineering

The Department of Bioengineering combines hands-on experience with the solid fundamentals that students need to advance themselves in research, medicine, and industry. The Department has a long-standing and unique relationship with the University of Pittsburgh Medical Center and other academic departments at the University of Pittsburgh as well as neighboring Carnegie Mellon University. Our faculty are shared with these organizations, offering our graduate and undergraduate students access to state-of-the-art facilities and a wide array of research opportunities. We currently have 187 graduate students who are advised by some 100 different faculty advisers, pursuing graduate research across 17 Departments and five Schools. Our undergraduate class-size of approximately 50 students per year ensures close student-faculty interactions in the classroom and the laboratory.

The main engineering building is located next to the Medical Center in Oakland, an elegant university neighborhood with museums, parks, and great restaurants. Beautiful new facilities have also been built, a short shuttle ride from the main campus, along the Monongahela River, replacing the steel mills that once were there. Our department is growing rapidly, both in numbers of students and faculty, and in the funding and diversity of our research. The Pittsburgh bioengineering community is a vibrant and stimulating alliance of diverse components for which our department forms an essential and central connection.


Undergraduate Students Awarded at the Engineers’ Society of Western PA Annual Banquet

Bioengineering, Chemical & Petroleum, Student Profiles

PITTSBURGH (February 16, 2018) … Last night as engineers from across the region gathered to attend the 134th Annual Engineering Awards Banquet of the Engineers’ Society of Western Pennsylvania (ESWP), the University of Pittsburgh’s Swanson School of Engineering announced its recipients of the George Washington Prize. This year’s recipient is Le Huang, an undergraduate student in bioengineering and an active member of the Swanson School community during her time at Pitt. Huang works as a research assistant in the Cardiovascular Systems Laboratory where she is developing a MATLAB-based mathematical model of the human cardiovascular system. Prior to that, she worked in the Cognition and Sensorimotor Integration Laboratory and has been a teaching assistant for several bioengineering and chemistry courses. Additionally, Huang is involved in Pitt’s Society of Women Engineers (SWE) where she serves on the executive board, co-chairs the Women in STEM Conference, and acts as an outreach activity leader for K-12 students. Pitt’s award-winning SWE chapter organizes events around the city of Pittsburgh to young women to explore STEM opportunities. Finalists for the George Washington Prize are Isaac Mastalski (Chemical Engineering) and Adam Smoulder (Bioengineering). Semi-finalists are Jennifer Cashman (Mechanical Engineering and Materials Science) and Sean Justice (Electrical and Computer Engineering). “The Swanson School is proud to recognize Le and the other finalists for their outstanding accomplishments at Pitt,” said Gerald D. Holder, U.S. Steel Dean of Engineering at Pitt. “Le and her colleagues are very deserving of this competitive award, and we think they will be successful Pitt Engineering alumni.” The George Washington Prize, founded in 2008, honors the first President of the United States and the country’s first engineer. Its mission is to reinforce the importance of engineering and technology in society, and the enhance the visibility of the profession across the Swanson School’s engineering disciplines. The annual award recognizes Pitt seniors who display outstanding leadership, scholarship and performance as determined by a committee of eight professional engineers and Swanson School faculty. Winners receive a $2500 Dean’s Fellowship and award plaque. An additional $7,500 is awarded to the winner if he or she attends graduate school at the University of Pittsburgh. Founded in 1880, ESWP is a nonprofit association of more than 850 members and 30 affiliated technical societies engaged in a full spectrum of engineering and applied science disciplines. Now in its 134th year, the annual Engineering Awards Banquet is the oldest award event in the world - predating the Nobel Prize (1901), the American Institute of Architects Gold Medal (1907), and the Pulitzer Prize (1917).


Postdoctoral Positions in Cardiopulmonary Organ-on-a-Chip

Bioengineering, Open Positions

A postdoctoral position is available through a collaboration between the laboratories of Dr. Stephen Chan, M.D., Ph.D., a physician-scientist and Director of the Center for Pulmonary Vascular Biology and Medicine at the University of Pittsburgh and Dr. Warren Ruder, Ph.D., a synthetic biologist and Assistant Professor of Bioengineering at the University of Pittsburgh. The postdoctoral associate will develop an arteriole-on-a-chip system to recapitulate pulmonary arteriole vasculature in vitro for the purpose of studying pulmonary hypertension (PH). The system will integrate air-perfused airway epithelial cells with a liquid-perfused co-culture of pulmonary artery endothelial cells, smooth muscle cells, and adventitial fibroblasts in a synthetic biology-enhanced microfluidic model to study the effects of microRNAs on PH. PhD, MD or MD/PhD is required. The successful candidate will be highly motivated, with excellent written and verbal English communication skills, experience and expertise in cell culture, molecular biology, and microfluidic systems, and a proven track record of their ability to develop high impact research projects in the field of bioengineering. Particular consideration will be given to candidates with demonstrated experience in synthetic biology, and experience developing organ-on-a-chip systems. The University of Pittsburgh is an Equal Opportunity Employer. Women and minorities are especially encouraged to apply. Interested applicants should forward their CV, statement of research interests, and references to: Warren Ruder, Ph.D. (warrenr@pitt.edu) Assistant Professor Department of BioengineeringUniversity of Pittsburgh Stephen Chan, M.D., Ph.D. (chansy@upmc.edu)Associate Professor and Director, Center for  Pulmonary Vascular Biology and Medicine University of Pittsburgh and UPMC The Department of Bioengineering and the Center for Pulmonary Vascular Biology and Medicine are strongly committed to a diverse academic environment and places high priority on attracting female and underrepresented minority candidates. We strongly encourage candidates from these groups to apply for the position. The University of Pittsburgh affirms and actively promotes the rights of all individuals to equal opportunity in education and employment without regard to race, color, sex, national origin, age, religion, marital status, disability, veteran status, sexual orientation, gender identity, gender expression, or any other protected class.


Pitt Undergraduates Finish in Second Place of Ergonomics Design Competition for Third Consecutive Year

Bioengineering, Chemical & Petroleum, Industrial, Student Profiles

PITTSBURGH (February 8, 2018) … Undergraduate students from the University of Pittsburgh Swanson School of Engineering finished in second place overall for the third year in a row at the International Ergonomics Design Competition hosted by Auburn Engineers, Inc.“We entered six teams this year, and two of them finished in the top five with one team finishing as the runner-up again,” said Joel Haight, associate professor of industrial engineering and director of Pitt’s Safety Engineering Program. Dr. Haight is faculty advisor to the Ergonomic Design Competition teams.Throughout the fall semester, students worked on a Preliminary Design Project to identify workplace stressors and apply ergonomic design principles to alleviate them. This year’s challenge centered on improving an operating room for veterinarians treating large dogs. The Final Design Project, which the students had to complete in 48 hours, involved the evaluation and redesign of a work station at a small engine repair shop.The Pitt teams comprised students from the departments of industrial engineering, bioengineering, chemical engineering, and psychology. According to Dr. Haight, the competition came down to the wire, with the Pitt students just barely edged out of the first place spot.“Our students were up against graduate students at almost all of the schools, and our top team came in just behind a team of graduate students from the University of Buffalo,” noted Dr. Haight.In addition to the two top five teams, the four other Pitt teams received honorable mentions, meaning they finished among the top 14 teams. A total of 28 teams competed, including students from the University of Michigan, Auburn University, Texas A&M, Universidad Autonoma de Nuevo Leon (Mexico), Virginia Tech, Concordia, and others.In response to the success of Pitt’s undergraduate students’ performance over the past three years, David C. Alexander, president of Auburn Engineers and competition director, collaborated with Dr. Haight to write a joint paper about the competition and its contribution to education.“We submitted the paper to the Institute of Industrial and Systems Engineers’ annual conference in Orlando, and it’s been accepted. We will talk about the competition and industrial engineering education at Pitt to conference attendees this May,” said Dr. Haight. Image (left to right): Top five finishers Dr. Haight, Rip Rucker (IE), Lauren Czerniak (IE), Sean Callaghan (IE), and Connor Bomba (IE) Image (left to right): Dr. Haight, James Oosten (BioE), Katelyn Axman (BioE), and Matt Astbury (BioE) Image (left to right): Dr. Haight, Mackenzie Cavanaugh (IE), Aster Chmielewski (IE), Tom Kramer (IE), and Chris Herrick (IE) Image (left to right): Matt Jones (Psy), Charlie Gates (IE), and Dr. Haight, missing from photo: Jack Clark (ChemE) Image (left to right): Evan Poska (IE), Matt Hoge (IE), Chris C.J. Luther (IE), and Dr. Haight ###
Matt Cichowicz, Communications Writer

New Gordon Research Conference on Neuroelectronic Interfaces Co-Founded by BioE’s Takashi Kozai


Electrophysiological signals being detected from neurons (blue) with a sub-cellular sized implantable composite microelectrode designed to stealthily avoid the foreign body response. (Image by TDY Kozai/BionicLab.ORG) PITTSBURGH (February 6, 2018) ... Takashi Kozai, assistant professor of bioengineering at the University of Pittsburgh Swanson School of Engineering, will act as co-vice chair at the inaugural Gordon Research Conference on Neuroelectronic Interfaces. The meeting will take place March 25-30, 2018 in Galveston, Texas. Neuroelectronic interfaces -commonly known as brain-machine (or brain-computer) interfaces- create a direct communication line from the central nervous system to the outside world. This connection allows scientists to research ways to rehabilitate those with paralysis, other forms of motor dysfunction, or limb loss. “One major limitation for practical clinical translation, despite nearly 60 years of chronic neural interface research, is that there remains a poor understanding of the complex biological and material failure modes across all classes of microelectrode arrays,” Kozai explains. “Among several classes of multi-modal problems encountered, the strong foreign body response, scar tissue formation, and implant material breakdown over time are critical obstacles. These issues ultimately lead to an electrical decoupling of implanted devices from the brain and a loss of signal.” “Our inaugural Gordon Research Conference (GRC) on Neuroelectronic Interfaces will challenge the international field to turn back to the drawing board of basic materials research armed with emerging basic neurosciences knowledge,” Kozai says. The event will bring together a multi-disciplinary team of leading experts in cellular neuroscience, brain pathology, neuro-technology and materials science to discuss and eventually solve these challenges in order to achieve a chronically useful and reliable neural interface. Kozai leads the Bio-Integrating Optoelectric Neural Interface & Cybernetics Lab (B.I.O.N.I.C. Lab) in the Swanson School of Engineering. The lab takes a multidisciplinary approach to better understand interactions at micro-scale neural interfaces and develop next-generation neural technologies that reduce or reverse negative tissue interactions. “As both scientific knowledge and technological advances progress, we’re finding that many of the assumptions that were made in the field are limited in scope, or incomplete,” Kozai says. “As a result, we see more and more of these dogmas fall apart as we push the limits of engineering.” As part of the five-day event, Kozai will lead a discussion on “Biomechanics of the Device-Tissue Interface.” The program also includes Xinyan Tracy Cui, William Kepler Whiteford Professor of Bioengineering at Pitt, who will present a talk titled “Biomimetic Strategy for Seamless Neural Electrode-Tissue Integration.” “The Gordon Research Conference is unlike most other conferences in that you get to spend a week sitting shoulder to shoulder with the leaders in the field to discuss new ideas and emerging research and development,” Kozai says. “We’ve been fortunate enough to bring together an all-star list of the world’s expert scientists and engineers.” Applications for this meeting must be submitted by February 25, 2018. Visit: https://www.grc.org/neuroelectronic-interfaces-conference/2018/. See the research being done at Pitt’s Human Neural Prosthetics Program: http://www.neurosurgery.pitt.edu/centers-excellence/human-neural-prosthetics.


Pitt Researchers Look at “Relaxin” to Heal an Aging Heart

Bioengineering, Student Profiles

PITTSBURGH (February 1, 2018) … As we age, the risk of developing cardiovascular disease such as heart failure and atrial fibrillation increases dramatically, and the rates of these age-associated diseases are expected to rise with a rapidly aging population. A team of researchers at the University of Pittsburgh believes that a naturally occurring hormone, relaxin, can reverse some of the effects of aging on the heart to reduce these risks through inhibiting a chronic, age-associated inflammatory response termed “inflammaging”. The study, “Relaxin reverses inflammatory and immune signals in aged hearts” (https://doi.org/10.1371/journal.pone.0190935) was led by Guy Salama, professor of medicine at Pitt, and Brian Martin, his graduate student researcher from the Swanson School of Engineering’s Department of Bioengineering. “While inflammation is helpful in instances of tissue injury or infection, the inflammatory response usually subsides upon injury resolution,” Martin explains. “However, in aging, there appears to be low-grade, systemic inflammation which can result in excess inflammatory and immune cells producing substances that are toxic to surrounding tissue.” In the case of the heart, damage to nearby tissue leads to pathological remodeling that lowers the threshold for disease development. “A notable occurrence in many cardiovascular diseases is a natural response to injury where collagen builds up on or between cells,” said Martin. “This accumulation can cause the heart to function improperly.” Relaxin is a naturally occurring hormone in the body that was discovered for its involvement in pregnancy and childbirth; however, studies have shown that it has multiple benefits outside of pregnancy in both sexes. “In a study using a male rat model of aging we showed that relaxin dramatically reduced incidence of arrhythmias, which can lead to stroke and sudden death,” said Salama. “We then found that relaxin reversed maladaptive electrical changes that are known to occur in patients with atrial fibrillation. Its primary effects were a dramatic reduction in collagen accumulation and a beneficial remodeling of cardiac electrical components needed for proper heart contraction.” “While much work is being done to understand how relaxin leads to these changes, the mechanisms by which relaxin mediates its effects are still largely unknown,” said Martin. For their study, the group used the F-344 Brown/Norway rat model from the National Institute of Aging because of its similar characteristics to human aging. What differentiated this study from others was their comparison of the effects of aging and relaxin between the sexes. “We used RNA-sequencing to count the messenger RNA (mRNA) levels in the tissue so that we can gauge what aging is doing at the genetic level and if relaxin can reverse these effects,” said Martin. “We then used a computational approach to analyze the differences in gene expression patterns of the rats and examined the vast literature on what each gene may be involved in. This can begin to predict what functional effects these genes will have in the body.” The results showed a difference in inflammatory and immune signaling between the male and female rats. The female rats had an overexpression of inflammatory and immune related genes which upon relaxin treatment, were suppressed. Though male rats did not show activation of inflammatory or immune responses in aging, relaxin still reduced gene expression of many inflammatory-related genes. These data suggest that relaxin can act as a potent anti-inflammatory. The team plans to continue research to further understand the effects of relaxin on “inflammaging.” “These results open a multitude of exciting possibilities,” said Salama. “Many cardiovascular diseases have an associated inflammatory component, and therefore, relaxin could be a potential therapy for these diseases.” ###

Upcoming Events

view more

Bioengineering By The Numbers


Number of Undergraduate Students enrolled for the 2017-2018 Academic Year


Number of PhD Candidates enrolled for the 2017-2018 Academic Year


Number of Masters Candidates enrolled for the 2017-2018 Academic Year


Number of PhD Degrees Awarded in 2016-2017 Academic Year


Number of MS Degrees Awarded in 2016-2017 Academic Year


Number of BS Degrees Awarded in 2016-2017 Academic Year


Number of Faculty Publications in 2016-2017 Academic Year


Number of Graduate Publications in 2016-2017 Academic Year


Number of Undergraduate Publications in 2016-2017 Academic Year