Pitt | Swanson Engineering
News Listing

Apr

Apr
3
2017

MCSI Seed Grants Fund New Round of Sustainability Research

Chemical & Petroleum, Civil & Environmental, Industrial, MEMS

PITTSBURGH, PA (April 3, 2017) … The Mascaro Center for Sustainable Innovation (MCSI) has announced the recipients of 2017-2018 MCSI seed grant funding. The annual seed grant program engages a core team of researchers who are passionate about sustainability. Seed grants support graduate student and post-doctoral fellows on one-year research projects. The University of Pittsburgh projects and faculty members to receive funding include:• “Protein lithograph: a sustainable technology for sub-5-nm nanomanufacturing.” Mostafa Bedewy, Assistant Professor, Department of Industrial Engineering.• “High efficiency refrigeration and cooling through additive manufactured magnetocaloric devices.” Markus Chmielus, Assistant Professor, Department of Mechanical Engineering and Materials Science.• “Toward machine learning blueprints for greener chelants.” John Keith, Assistant Professor, Inaugural Richard King Mellon Faculty Fellow in Energy, Department of Chemical and Petroleum Engineering.• “H2P: HydroPonics to Pyrolysis: An enclosed system for the phytoremediation and destruction of perfectly persistent emerging contaminants in our water.” Carla Ng, Assistant Professor, Department of Civil and Environmental Engineering; David Sanchez, Assistant Professor, Department of Civil and Environmental Engineering.MCSI developed the research seed grant program to provide faculty with funding support to allow students to participate in high-quality research, teaching, outreach and creative endeavors. The goals of the grants are: (1) seed funding to develop ideas to the point where external funding can be obtained; (2) awards to support scholarship in areas where external funding is extremely limited; (3) resources to introduce curricular innovations into the classroom; or (4) tools or techniques to encourage community outreach and education. ###
Matt Cichowicz, Communications Writer

Mar

Mar
30
2017

Rapid Ready Tech Interviews Assistant Professor Wei Xiong: A Deeper Look into Metal Additive Manufacturing Material Properties

MEMS

Researchers at the University of Pittsburgh have been working with ANSYS to create a simulation technique that can evaluate the effects of additive manufacturing (AM) on the microstructure and material properties of parts produced for high-temperature applications. Up to this point, the only way to certify the quality of these parts has been to perform comprehensive physical tests. Unfortunately, these procedures have proven to be too costly and time-consuming. View the full article at Rapid Ready Tech.
Author: Tom Kevan, Digital Engineering
Mar
22
2017

The Swanson School Presents Alumnus Jay Nunamaker with 2017 Distinguished Alumni Award for Mechanical Engineering and Materials Science

MEMS

PITTSBURGH (March 22, 2017) … Collectively they are professors, researchers and authors; inventors, builders and producers; business leaders, entrepreneurs and industry pioneers. The 53rd annual Distinguished Alumni Banquet brought together honorees from each of the Swanson School of Engineering’s six departments and one overall honoree to represent the entire school. The banquet took place at the University of Pittsburgh's Alumni Hall, and Gerald D. Holder, US Steel Dean of Engineering, presented the awards.This year’s recipient for the Department of Mechanical Engineering and Materials Science was Jay Nunamaker, Jr., PhD, BSME ’60, MSIE ’66, Regents and Soldwedel Professor of MIS Computer Science and Communications, University of Arizona.“Jay’s expertise in information technology is recognized around the world, and he has been named by Forbes Magazine as one of eight key innovators in information technology,” said Dean Holder. “To call his research production and citations ‘impressive’ would be a disservice, especially since this January, he was named the most prolific author of the past half-century by the Hawaii International Conference on System Sciences. He has over 25,000 citations and 400 publications. I also might add that he had over $100 million in research funding.”About Jay NunamakerDr. Jay Nunamaker, Jr. received his BS degree in mechanical engineering and MS degree in industrial engineering from the University of Pittsburgh. After graduating as a mechanical engineer, he worked at the Shippingport Atomic Power Station as a test and design engineer for 3.5 years. He received a BS from Carnegie Mellon University and his PhD in operations research and systems engineering from Case Institute of Technology of Case Western Research University. He continued his academic career as a research assistant on the ISDOS project at the University of Michigan and then became an associate professor of computer science and industrial administration at Purdue University. Nunamaker is currently the Regents and Soldwedel Professor of MIS, Computer Science and Communication and the Director of the Center for the Management of Information at the University of Arizona. He founded the MIS department at the University of Arizona in 1974 and served as department head for 18 years. He received his professional engineer’s license in 1965.Forbes Magazine featured Nunamaker in the July 1997 issue as one of eight key innovators in information technology. He is widely published with more than 25,000 citations to his research. He has produced more than 400 journal articles, book chapters, books and refereed proceedings. The Hawaii International Conference on System Sciences recognized Nunamaker in January 2017 as the most prolific author over the past fifty years. ### Photo Above: Dean Holder (left) with Jay Nunamaker and MEMS Department Chair Brian Gleeson.
Matt Cichowicz, Communications Writer
Mar
14
2017

Pitt’s Bioengineering and Industrial Engineering programs move up in 2018 U.S. News and World Report Graduate School Rankings

All SSoE News, Bioengineering, Chemical & Petroleum, Civil & Environmental, Electrical & Computer, Industrial, MEMS

PITTSBURGH (March 14, 2017) … The University of Pittsburgh’s Swanson School of Engineering has moved up one slot among engineering programs in the 2018 edition of U.S. News & World Report’s “Best Graduate Schools,” which will be available on newsstands April 11. The Swanson School is tied 42nd overall among university engineering programs, and 21st among all Association of American Universities (AAU) members. Two of its programs, bioengineering and industrial engineering, made significant gains over 2017. Bioengineering jumped from 18th in the nation to 12th overall, and remains at 6th among public AAU university programs. Industrial moved from 23rd to 17th overall, and from 13th to 10th among AAU publics. Other department rankings include: Chemical engineering: 33rd overall, 18th among AAU publics Civil engineering: 60th overall, 27th among AAU publics Computer engineering: 43rd overall, 20th among AAU publics Electrical engineering: 55th overall, 26th among AAU publics Materials science: 43rd overall, 22nd among AAU publics Mechanical engineering: 57th overall, 26th among AAU publics Complete rankings and information about the process can be found online in the U.S. News Grad Compass. ###

Mar
7
2017

One Step at a Time: Pitt engineering and medical programs receive NSF award to develop ultrasonic sensors for a hybrid exoskeleton

Bioengineering, MEMS

PITTSBURGH (March 7, 2017) … The promise of exoskeleton technology that would allow individuals with motor impairment to walk has been a challenge for decades. A major difficulty to overcome is that even though a patient is unable to control leg muscles, a powered exoskeleton could still cause muscle fatigue and potential injury. However, an award from the National Science Foundation’s Cyber-Physical Systems (CPS) program will enable researchers at the University of Pittsburgh to develop an ultrasound sensor system at the heart of a hybrid exoskeleton that utilizes both electrical nerve stimulation and external motors. Principal investigator of the three year, $400,000 award is Nitin Sharma, assistant professor of mechanical engineering and materials science at Pitt’s Swanson School of Engineering. Co-PI is Kang Kim, associate professor of medicine and bioengineering. The Pitt team is collaborating with researchers led by Siddhartha Sikdar, associate professor of bioengineering and electrical and computer engineering at George Mason University, who also received a $400,000 award for the CPS proposal, “Synergy: Collaborative Research: Closed-loop Hybrid Exoskeleton utilizing Wearable Ultrasound Imaging Sensors for Measuring Fatigue.”This latest funding furthers Dr. Sharma’s development of hybrid exoskeletons that combine functional electrical stimulation (FES), which uses low-level electrical currents to activate leg muscles, with powered exoskeletons, which use electric motors mounted on an external frame to move the wearer’s joints. “One of the most serious impediments to developing a human exoskeleton is determining how a person who has lost gait function knows whether his or her muscles are fatigued. An exoskeleton has no interface with a human neuromuscular system, and the patient doesn’t necessarily know if the leg muscles are tired, and that can lead to injury,” Dr. Sharma explained. “Electromyography (EMG), the current method to measure muscle fatigue, is not reliable because there is a great deal of electrical “cross-talk” between muscles and so differentiating signals in the forearm or thigh is a challenge.” To overcome the low signal-to-noise ratio of traditional EMG, Dr. Sharma partnered with Dr. Kim, whose research in ultrasound focuses on analyzing muscle fatigue. “An exoskeleton biosensor needs to be noninvasive, but systems like EMG aren’t sensitive enough to distinguish signals in complex muscle groups,” Dr. Kim said. “Ultrasound provides image-based, real-time sensing of complex physical phenomena like neuromuscular activity and fatigue. This allows Nitin’s hybrid exoskeleton to switch between joint actuators and FES, depending upon the patient’s muscle fatigue.” In addition to mating Dr. Sharma’s hybrid exoskeleton to Dr. Kim’s ultrasound sensors, the research group will develop computational algorithms for real-time sensing of muscle function and fatigue. Human subjects using a leg-extension machine will enable detailed measurement of strain rates, transition to fatigue, and full fatigue to create a novel muscle-fatigue prediction model. Future phases will allow the Pitt and George Mason researchers to develop a wearable device for patients with motor impairment. “Right now an exoskeleton combined with ultrasound sensors is just a big machine, and you don’t want to weigh down a patient with a backpack of computer systems and batteries,” Dr. Sharma said. “The translational research with George Mason will enable us to integrate a wearable ultrasound sensor with a hybrid exoskeleton, and develop a fully functional system that will aid in rehabilitation and mobility for individuals who have suffered spinal cord injuries or strokes.” ### Photo above: Dr. Kim (left) with Dr. Sharma and a hybrid exoskeleton prototype in the Neuromuscular Control and Robotics Laboratory at the Swanson School of Engineering.

Feb

Feb
6
2017

MEMS Advanced Manufacturing Faculty Position

MEMS, Open Positions

The Department of Mechanical Engineering and Materials Science (MEMS) at the University of Pittsburgh (Pitt) invites applications for a tenure ­track assistant professor or associate professor position in the Advanced Manufacturing area, with a mechanical engineering and/or materials engineering focus. Successful applicants should have the ability to build an externally funded research program, as well as contribute to the teaching mission of the MEMS Department. Applicants should have a PhD or ScD in Mechanical Engineering, Materials Science & Engineering or a related field. Applicants with outstanding track records at the associate professor level are encouraged to apply. We are seeking applicants who have strong interdisciplinary interests and who can collaborate across engineering disciplines. We are particularly interested in candidates with expertise in joining via techniques such as (but not limited to) laser welding, friction stir welding, ultrasonic welding, and diffusion bonding, by considering complex interactions between processing, phase change, induced stress, etc.  Also of great interest is expertise in design-manufacture-assembly of complex multi-material products through integration of process capability/modeling/control, collected metrology data, and as-manufactured materials and structural characteristics. The Department of Mechanical Engineering and Materials Science has 28 tenured or tenure-track faculty members who generate over $6 million in annual research expenditures. The Department maintains cutting-edge experimental and computational facilities in its five core research competencies: advanced manufacturing and design; materials for extreme conditions, biomechanics and medical technologies; modeling and simulation; energy system technologies; and quantitative and in situ materials characterization. The successful candidate for this position will benefit from the resources, support, and a multidisciplinary research environment fostered by the University of Pittsburgh’s Mascaro Center for Sustainable Innovation (http://www.mascarocenter.pitt.edu), Center for Energy (http://www.energy.pitt.edu) and Center for Simulation and Modeling (http://www.sam.pitt.edu), as well as the Pittsburgh Supercomputing Center (http://www.psc.edu). Qualified applicants should submit their applications electronically to pitt-mems-search@engr.pitt.edu with AM Search as an identifier. The application should include the following materials in pdf form: a curriculum vitae, a statement of research interests together with a listing of teaching interests, and name and contact information of at least three references. Review of applications will begin on February 15, 2017, and continue until the position is filled. Candidates from groups traditionally underrepresented in engineering are strongly encouraged to apply. The candidate should be committed to high-quality teaching for a diverse student body and to assisting our Department in enhancing diversity. The University of Pittsburgh is an EEO/AA/M/F/Vets/Disabled employer.

AM Search
Feb
6
2017

MEMS High Performance Computing Faculty Position

MEMS, Open Positions

The Department of Mechanical Engineering and Materials Science (MEMS) at the University of Pittsburgh (Pitt) invites applications for a tenure-track assistant professor or associate professor position in High Performance Computing, with a mechanical engineering focus. Successful applicants should have the ability to build an externally funded research program, as well as contribute to the teaching mission of the Mechanical Engineering programs. Applicants should have a PhD or ScD in Mechanical Engineering or a related field. Applicants with outstanding track records at the associate professor level are encouraged to apply. We are seeking applicants who have strong interdisciplinary interests and who can collaborate across disciplines of engineering. We are particularly interested in candidates with expertise in high-fidelity computational modeling, multi-scale/multi-physics simulations, high-order discretization in complex geometry, or experience in incorporating (big) data into computation with broad applications in engineering. The Department of Mechanical Engineering and Materials Science has 28 tenured or tenure-track faculty members who generate over $6 million in annual research expenditures.  The National Research Council (NRC) has recently placed Mechanical Engineering at Pitt as top 20 among public universities.  The Department maintains cutting-edge experimental and computational facilities in its five core research competencies: advanced manufacturing and design; materials for extreme conditions, biomechanics and medical technologies; modeling and simulation; energy system technologies; and quantitative and in situ materials characterization. The successful candidate for this position will benefit from the resources, support, and a multidisciplinary research environment fostered by the University of Pittsburgh’s Mascaro Center for Sustainable Innovation (http://www.mascarocenter.pitt.edu), Center for Energy (http://www.energy.pitt.edu) and Center for Simulation and Modeling (http://www.sam.pitt.edu), as well as the Pittsburgh Supercomputing Center (http://www.psc.edu). Qualified applicants should submit their applications electronically to pitt-mems-search@engr.pitt.edu with HPC Search as an identifier. The application should include the following materials in pdf form: a curriculum vitae, a statement of research interests together with a listing of teaching interests, and name and contact information of at least three references. Review of applications will begin on February 15, 2017, and continue until the position is filled. Candidates from groups traditionally underrepresented in engineering are strongly encouraged to apply. The candidate should be committed to high-quality teaching for a diverse student body and to assisting our Department in enhancing diversity. The University of Pittsburgh is an EEO/AA/M/F/Vets/Disabled employer.

HPC Search