Pitt | Swanson Engineering

The Department of Mechanical Engineering and Materials Science (MEMS) is the largest in the school in terms of students and faculty. The department has core strengths in the traditional areas of bioengineering, manufacturing, microsystems technology, smart structures and materials, computational fluid and solid dynamics, and energy systems research. Key focus is reflective of national trends, which are vying toward the microscale and nanoscale systems level.


The Department of Mechanical Engineering and Materials Science houses ABET -accredited mechanical engineering and materials science and engineering programs that provide the solid fundamentals, critical thinking, and inventive spark that fire up our graduates as they design the future. The department graduates approximately 90 mechanical and materials science engineers each year, with virtually 100% of being placed in excellent careers with industry and research facilities around the globe.

The department houses faculty who are world-renowned academicians and accessible teachers, individuals of substance who seek to inspire and encourage their students to succeed. The department also has access to more than 20 laboratory facilities that enhance the learning process through first-rate technology and hands-on experience.

That experience is integrated into every aspect of the department. Events such as the SAE Formula Car Program add to students' real-world knowledge; each year, students construct their own vehicle and compete with students from other universities nationwide and internationally on the strength of their design and racing. The Department of Mechanical Engineering and Materials Science also is involved in the Cooperative Education (Co-Op) Program, bringing students together with industry for three terms of professional work.

Sep
19
2016

Pitt mechanical engineering researcher receives NSF award to better describe how liquids interact within solid structures

MEMS

PITTSBURGH (September 19, 2016) … The infamous collapse of Washington State’s Tacoma Narrows Bridge in 1940 is a textbook example of how harmonic resonance can cause structural failure. Likewise, in principle, similar phenomena could occur in the delicate vessels and arteries in the human body. Researchers at the University of Pittsburgh’s Swanson School of Engineering are utilizing a $121,027 National Science Foundation award to study the interaction of a viscous liquid within a solid body and investigate which mathematical models best describe the phenomena. Principal investigator of the three-year study, “On the Occurrence of Resonance in Elastic-Dissipative Coupled Systems,” is Giovanni P. Galdi, PhD, the Leighton E. and Mary N. Orr Professor of Mechanical Engineering and Professor of Mathematics. Dr. Galdi, a world-renowned expert within the field of mathematical fluid mechanics and editor-in-chief of the Journal of Mathematical Fluid Mechanics, has been sole PI in seven NSF grants over 20 years. “The study of the motion of a viscous liquid in the presence of rigid or deformable bodies has become one of the main focuses of applied research. However, there is a lack of a rigorous explanation of the phenomena and identify the good versus bad mathematical models,” Dr. Galdi said. “Our first goal is to study the blood flow model, and then to examine when a liquid is impinging on an elastic framework.” Dr. Galdi explained that in the context of modeling of arterial blood flow, it is important to determine whether, for a given model, the pulsatile action of the heart pumping blood would produce an unrealistic high-amplitude oscillation of the arterial wall. While under normal circumstances such a condition would not occur, Dr. Galdi said that better understanding the models would give researchers a better understanding of how the circulatory system operates. The second goal will examine the vortex-induced oscillations of a structure in the uniform stream of a viscous liquid. Dr. Galdi references the Tacoma Narrows Bridge event to explain how this phenomenon plays a major role in the collapse of structures such as chimneys and bridges under wind load. “Just like blood flowing through an artery, wind acts like a fluid when it impacts a solid structure. For example, you can see it in action when a flag waves in a strong wind. We utilize mathematical models to determine the quantitative relation between magnitude of upstream velocity and frequency of oscillation, which are critical when designing larger structures like bridges and office towers. “Fluid mechanics plays such an important role in everything from the human body to construction to even the potential for nano-sized robots, so this research can help to identify the most appropriate models to use.” ###

Sep
7
2016

Oberg Industries partners with Pitt’s Swanson School of Engineering to advance additive manufacturing problem-solving for industry

MEMS

PITTSBURGH (September 7, 2016) … As additive manufacturing, or 3D printing, continues to advance in industry and academia, knowledge gaps can appear as researchers push the technology to new limits. To solve some of industry’s most difficult additive manufacturing problems,  Oberg Industries and the University of Pittsburgh’s Swanson School of Engineering have partnered to combine Oberg expertise in manufacturing complex tooling and precision machined or stamped metal components with Pitt’s ANSYS Additive Manufacturing Research Laboratory (AMRL). Through the partnership with the Swanson School, for the next two years Oberg will have full-time employees on-site to manage technical excellence at the ANSYS AMRL. Dedicated in June 2016 at the Swanson School, the ANSYS AMRL is an additive manufacturing lab equipped with some of the most advanced additive manufacturing devices that utilize metals, alloys, polymers and other materials to print components for nearly every industry. Oberg will promote the partnership to its customer partners to broaden corporate activity at Pitt while maintaining priority industrial access for its education, training, prototyping, testing, design, and production uses. “This collaboration will link Pitt researchers in engineering, especially biomedical and aerospace, with Oberg’s remarkable fabrication expertise in medical, aerospace, energy, and industrial production,” said  Mark Redfern, Pitt’s Vice Provost for Research. “We look forward to wider engagement of faculty experts and students through the collaboration and with Oberg.” Oberg and Pitt’s collaborative work in this area was initiated with funding from the federal government via  America Makes (the National Additive Manufacturing Innovation Institute). Pitt’s research includes the development and testing of new tools to optimize the design and construction of manufactured parts to improve strength, lower weight, reduce overall costs, and improve sustainability of production. “The industry is rapidly changing as the technology advances, and customers are increasingly viewing Oberg as a partner to capture the advantages,” said David L. Bonvenuto, President and CEO of Oberg. “Through this partnership we’re connecting our customers to Pitt’s expertise in additive manufacturing and a state-of-the-art additive research facility. Together we ask better questions, we discover and learn more, which ultimately advances Oberg’s value to its customers in this new era of additive manufacturing.” “The ANSYS AMRL is strengthened by this partnership with Oberg,” noted  Albert To, associate professor of mechanical engineering and materials science and one of Pitt’s AM researchers. “The value we gain from Oberg who will manage the machines, help students advance their skills, and interact with industry to advance this technology, is phenomenal.” Since 2014, additive manufacturing researchers at the Swanson School have attracted more than $6 million in grants from America Makes, the National Energy Technology Laboratory, the National Science Foundation, and Research for Advanced Manufacturing in Pennsylvania. ### Pictured above at the signing: Front row (left to right): Jason Oskin, Albert To, Eric Oberg, Mark Redfern, David VorpBack row:  Brian Vidic, Don Shields, Joe DeAngelo, Dave Bonvenuto, Dave Rugaber, Howard Kuhn

Aug
24
2016

Mechanical Engineering's Anne Robertson named Grant Reviewer for National Institutes Of Health

Bioengineering, MEMS

PITTSBURGH (August 24, 2016) … The National Institutes of Health (NIH) appointed Anne M. Robertson, William Kepler Whiteford Professor of Engineering and Director of the Center for Faculty Excellence in the Department of Mechanical Engineering and Material Science at the University of Pittsburgh, to the Neuroscience and Ophthalmic Imaging Technologies Study Section at the Center for Scientific Review. Members of NIH Study Sections are responsible for reviewing grant applications and making recommendations to the appropriate national advisory council or board for funding. They are also expected to have a comprehensive understanding of the status of research in their fields of science and apply that knowledge in the evaluation of research proposals. “The National Institutes of Health have an invaluable impact on reducing disease, improving health and quality of life, conducting fundamental research and creating a community of leading scientists who support each other’s efforts,” said Robertson, who is also a professor of Bioengineering at Pitt. “I am honored with this opportunity to join colleagues in contributing to the mission of the largest biomedical research institution in the world.” The appointment of study members is based on the scientists’ demonstrated competence and achievements in their disciplines. Potential study members must have also demonstrated outstanding results in their research accomplishments, publications in scientific journals and other significant scientific activities, achievements and honors. NIH officers in charge of selecting new study members take in to account mature judgment and objectivity as well as the ability to work effectively in a group. Robertson will serve a four-year term as a NIH Reviewer from July 1, 2016 until June 30, 2020. About Anne Robertson Robertson is professor of Mechanical Engineering and Materials Science and professor of Bioengineering at the University of Pittsburgh. She holds a William Kepler Whiteford Endowed Professorship in Engineering. Robertson’s research is focused on cerebral vascular disease and mechanobiology, and she directs a multi-institution program on cerebral aneurysm research. She is principal investigator on a current R01 and two multi PI R21 grants from the National Institutes of Health and has held visiting research professorships at universities, including the Polictecnico di Milano (Italy), the Bernouilli Center at the Swiss Federal Institute of Technology (EPFL, Switzerland) and RWTH University of Aachen (Germany). Robertson is director and founder of the newly formed Center for Faculty Excellence in the Swanson School of Engineering (SSOE). This Center takes the lead in developing and implementing programs to enhance the effectiveness of junior faculty in building outstanding academic careers. Robertson was one of 19 women admitted into the 2013-2014 class of the Executive Leadership in Academic Technology and Engineering (ELATE) at Drexel University, during which she developed Program LE2AP (Leveraging Excellence in Engineering Assistant Professors) that led to the development of the Center. Robertson earned her PhD in Mechanical Engineering from the University of California Berkeley, after which she was a President’s Postdoctoral Fellow in the Department of Chemical Engineering, also at U.C. Berkeley. She joined the University of Pittsburgh in 1995, where she was the first female faculty member in the Department of Mechanical Engineering. She served as director of the Graduate Program in Mechanical Engineering from 2004 to 2008. In 2007, she was the recipient of the Beitle-Veltri Memorial Outstanding Teaching Award in the SSOE. Robertson is a strong supporter of diversity-related initiatives, and in 2007, she received the Robert O. Agbede Faculty Award for Diversity in the SSOE. ###
Author: Matt Cichowicz, Communications Writer
Aug
16
2016

Pitt mechanical engineers receive $350,000 NSF grant to develop fast computational modeling for additive manufacturing

MEMS

PITTSBURGH (August 16, 2016) … As additive manufacturing (AM), or 3D printing, becomes more commonplace, researchers and industry are seeking to mitigate the distortions and stresses inherent in fabricating these complex geometries. Researchers at the University of Pittsburgh’s Swanson School of Engineering and Pittsburgh-based manufacturer Aerotech, Inc. recently received a $350,000 grant from the National Science Foundation to address these design issues by developing new, fast computational methods for additive manufacturing. The proposal, “Novel Computational Approaches to Address Key Design Optimization Issues for Metal Additive Manufacturing,” is a three-year, $350,000 GOALI (Grant Opportunities for Academic Liaison with Industry) grant funded by the NSF’s Division of Civil, Mechanical and Manufacturing Innovation (CMMI). The team, based in the Swanson School’s Department of Mechanical Engineering and Materials Science, includes Associate Professor and Principal Investigator Albert To; and co-PIs Assistant Professor Sangyeop Lee and Adjunct Associate Professor Stephen Ludwick. Aerotech, Inc. will partner with Pitt by providing designs and evaluation. The group’s research is an extension of previous funding from the Research for Advanced Manufacturing in Pennsylvania program (RAMP). “The ability to create geometrically complex shapes through additive manufacturing is both a tremendous benefit and a significant challenge,” Dr. To said. “Optimizing the design to compensate for residual distortion, residual stress, and post-machining requirements can take days or even months for these parts.” To mitigate these challenges, Dr. To and his group will first develop a simple yet accurate thermomechanics model to predict residual stress and distortion in an AM part. Next, they will develop a topology optimization method capable of generating designs with both free-form surfaces and machining-friendly surfaces. According to Dr. To, this will compensate for the geometric complexity and organic nature of AM parts, which contribute to their potential for distortion and post-machining problems. These approaches will then be developed and tested using real parts and design requirements provided by Aerotech. Aerotech’s Stephen Ludwick expects that "the tools developed through this collaboration will allow us to produce the complex parts enabled by additive manufacturing with a minimum of trial-and-error and rework. This in turn allows us to design stiff and lightweight components in our high-speed motion systems which are also used by other companies engaged in advanced manufacturing." “By utilizing advanced mechanic theory, we hope to reduce design optimization of additive manufactured parts to minutes, thereby reducing the time of design life cycle,” Dr. To said. “This would lead to wider adoption of AM by the U.S. manufacturing base and further improve the economic sustainability of the additive manufacturing process.” About the NSF GOALI Grant Grant Opportunities for Academic Liaison with Industry (GOALI) promotes university-industry partnerships by making project funds or fellowships/traineeships available to support an eclectic mix of industry-university linkages. Special interest is focused on affording the opportunity for: Faculty, postdoctoral fellows, and students to conduct research and gain experience in an industrial setting; Industrial scientists and engineers to bring industry perspectives and integrative skills to academe; and Interdisciplinary university-industry teams to conduct research projects. This solicitation targets high-risk/high-gain research with a focus on fundamental research, new approaches to solving generic problems, development of innovative collaborative industry-university educational programs, and direct transfer of new knowledge between academe and industry. GOALI seeks to fund transformative research that lies beyond that which industry would normally fund. ### Image above: The supporting structures failed for these four fatigue test bars. The stress buildup in the longer length of the bars created an excessive curling force on the outer edges of the support structures, resulting in fracture. Image below: For larger internal lattice networks, if the open run of the lattice network is close to the maximum build span, the solid skinned top surface of the lattice network will risk an incomplete closure. Because of internal stresses generated during the build, these unconnected areas raise and in turn cause the recoating blade to strike them, which results in a failed build.

Jul
21
2016

Pitt engineers receive $503,000 NSF grant to study how aluminum alloy microstructures form in real time

MEMS

PITTSBURGH (July 21, 2016) … A grant from the National Science Foundation will enable researchers at the University of Pittsburgh to utilize a one-of-a-kind transmission electron microscope developed at Lawrence Livermore National Laboratory to examine in real time how microstructures form in metals and alloys as they solidify after laser beam melting.  The proposal, “In-situ transmission electron microscopy of microstructure formation during laser irradiation induced irreversible transformations in metals and alloys” was awarded a three-year, $503,435 grant from the NSF Division of Materials Research. Principal investigator is Jörg M.K. Wiezorek, PhD, professor of mechanical engineering and materials science. The grant will also fund educational outreach and enhance the materials science curriculum at Pitt.Dr. Wiezorek and his research group will utilize the dynamic transmission electron microscope (DTEM) at Lawrence Livermore National Laboratory, which unlike a traditional electron microscope taking before-and-after images, can record nanoscale transformations in materials with nanosecond time-resolution. The researchers will study rapid solidification processes in aluminum alloys that are associated with laser or electron beam processing technologies used in welding, joining and additive manufacturing. “Predicting microstructure formation during rapid non-equilibrium processing of engineering materials is a fundamental challenge of materials science. Prior to advent of the DTEM we could only simulate these transformations on a computer,” Dr. Wiezorek explained. “We hope to discover the mechanisms of how alloy microstructures evolve during solidification after laser melting by direct and locally resolved observation. Thermodynamics provides for the limiting constraints for the transformations of the materials, but it cannot a-priori predict the pathways the microstructures take as they transition from the liquid to the final solid state.”Dr. Wiezorek expects the research to help validate computer models and determine how composition changes and temperature gradients affect the microstructure. The data will assist in providing a stronger scientific underpinning for establishing relationships between the processing conditions, structure and properties of the alloys obtained by laser processing. “We are hoping to unravel details of the kinetic pathways taken from the liquid to the final solid structure,” Dr. Wiezorek said. “This research will help us to refine solidification related manufacturing processes and to identify strategies to optimize how materials perform.”About Jörg WiezorekDr. Wiezorek’s research group studies advanced materials and materials processing using and developing methods for the quantitative characterization by electron, ion and X-ray beam methods and other modern micro-characterization techniques. Combining experiments and appropriate computer simulations with the principles and practice of physical metallurgy and metal physics leads to the discovery of novel materials, materials behaviors and explanations of their properties, with an emphasis on intermetallic and metallic systems.  Recent research thrusts include: (1) Determination of the electron density and nature of bonding in transitional metal based materials including intermetallics by quantitative electron diffraction and validation of density functional theory calculations; (2) Surface modification of structural alloys for enhanced performance by severe plastic deformation and grain-boundary-engineering; (3) In-situ studies of rapid irreversible transients, e.g. solidification, in pulsed laser processed metals and alloys using Ultrafast (nanosecond) TEM imaging and diffraction.Dr. Wiezorek joined the Swanson School of Engineering in the fall of 1998 and was promoted to Full Professor in 2014. He received a PhD in Materials Science and Metallurgy from the University of Cambridge, UK (1994) and obtained a Physics degree from the University of Münster, Germany (1991). He conducted high-temperature materials research using advanced transmission electron microscopy at The Ohio State University prior to his faculty appointment. ### Figure of DTEM below and above created by Ryan Chen of the Technical Information Department at Lawrence Livermore National Laboratory

Upcoming Events


back
view more