Please write neatly and show all of your work. Adequate space for your response has been provided following each question. If you need additional room, turn to the backside of the page or ask the instructor for paper. Good luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>Points Available</th>
<th>Points Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>
1) (20 points) Write the screen display for the following script and associated function in the space provided.

```matlab
% script
x = 4
y = 3
z=[2 4 5 3 1];
for i=1:2:5
    if i <= 2
        out1=confuse2(i,x,y,z)
    elseif i > 3
        confuse1(i,x,y,z)
    else
        out2=confuse3(i,y,x,z)
    end
end

function confuse1(j,a,b,c)
y1=j*3/b+a^2/2-4

function new2 = confuse2(j,y,x,k)
for i=1:3:5
    new2(i)=confuse3(i,x,y,k);
end

function w=confuse3(j,d,s,k)
switch (k(j))
    case {1,2}
        w=d+9
    case {3,4}
        w=2*s
    otherwise
        w=d+s
end
```

<table>
<thead>
<tr>
<th>Display #</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
2) **(40 Points)** The following program is one solution to your programming assignment 12. It is written with function calls from main(). The function calls (underlined and in bold) are as shown. Referring to both the function calls and the function definitions (provided without prototype), write appropriate function prototypes and definitions in the space provided.

```c
#include<stdio.h>
#include<math.h>
#define MAXSIZE 50

// PROTOTYPES:
________________ // enter prototype for header
________________ // enter prototype for getxydata
________________ // enter prototype for getangle
________________ // enter prototype for interp
________________ // enter prototype for displayresults
________________ // enter prototype for goagain

//*******************************************
main()
{ // begin main
    // variable declarations
    double lift[MAXSIZE], angle[MAXSIZE];
    int numpts;
    double liftangle, liftest;
    // algorithm
    header();
    // get lift data
    getxydata( angle, lift, &numpts );
    // estimate lift given angle
    do
    { // begin do..while
        liftangle = getangle( );
        liftest = interp( liftangle, angle, lift, numpts );
        displayresults( liftangle, liftest );
    } while ( goagain( ) == 1 );
}
//*****************************************************************************

//*******************************************
header( )        // complete fcn definition
{ // begin header
    printf("This is an exam question!!!\n\n");
}
// end header

displayresults( ) // complete fcn definition
{/ // begin displayresults
    printf("\nLift angle = %.3lf", liftangle);
    printf("Estimated lift = %.3lf", liftest);
} // end displayresults
//
```
getxydata(____________________________) // complete fn definition

{ // begin getxydata
 // variable declaration
 FILE *pInfile;
 // algorithm
 pInfile = fopen("liftdata.dat", "r");
 *pnumpts = 0;
 while (fscanf(pInfile," %lf %lf",&x[*pnumpts],&y[*pnumpts]) == 2){
 *pnumpts = *pnumpts+1; } // end while
 fclose(pInfile);
} // end getxydata

getangle(__________________________________) // complete fn definition

{ // begin getangle
 // variable declaration
 double angle;
 // algorithm
 printf("\n\nPLease enter angle for lift estimate ==> ");
 scanf("%lf", &angle);
 return(angle);
} // end getangle

interp(__) // complete fn definition

{ // begin interp
 // variable declaration
 double y, slope;
 int i;
 // algorithm
 if (x <= xvec[0]) {
 y = yvec[0]; }
 else if (x >= xvec[npts-1]) {
 y = yvec[npts-1];}
 else {
 i = 0;
 while (x > xvec[i]) {
 i = i+1; }
 slope = (yvec[i]-yvec[i-1])/(xvec[i]-xvec[i-1]);
 y = yvec[i]+slope*(x-xvec[i]); }
 return(y);
} // end interp

goagain(______________________________________) // complete fn definition

{ // begin goagain
 // variable declaration
 int choice;
 // algorithm
 printf("\n\nAnother estimate? 1 = yes, 2 = no ==> ");
 scanf("%d", &choice);
 return(choice);
} // end goagain} // end goagain
3) (20 Points) The following program is to get a list of numbers from the user and then display the list to the screen. The list must be displayed as

\[\text{list}[0] = \text{first value input} \]
\[\text{list}[1] = \text{second value input} \]
\[\text{etc} \]

The program code to get the list of numbers is provided. You are to provide the code to display the list of numbers using a function called \text{displaylist}. You must write the prototype, the calling statement, and the code in the spaces provided.

```c
#include<stdio.h>
#define MAXSIZE 20

// prototypes
void getdata( int vec[], int *pvecsize );

// prototypes
void displaylist( int list[], int listused );

main()
{ // begin main
    // variable declaration
    int list[MAXSIZE];
    int listused;
    getdata( list, &listused );
    displaylist( list, &listused );
}

void getdata( int vec[], int *pvecsize )
{ // begin getdata
    int flag=1;
    // algorithm
    *pvecsize = 0;
    do
    { // begin do..while
        if ( flag == 1 );
        { // begin if
            printf( "Enter value ==> ");
            scanf( "%d", &vec[*pvecsize] );
            *pvecsize = *pvecsize+1;
        } // end if
        printf( "Enter another value? 1 = yes, 2 = no ==> ");
        scanf( "%d", &flag );
    } while ( flag == 1 );
    // end getdata

void displaylist( int list[], int listused )
{ // begin displaylist
    int i;
    for ( i = 0; i < listused; i++ )
    { printf( "%d ", list[i] );
    }
    printf( "\n" );
}

//Write code for function displaylist here
```
4) (15 Points) You are in the process of creating a program which performs matrix manipulations on square matrices. The first operation you want to include is matrix addition. The code for the main program is shown below. A prototype statement for a function called “addmat”, which must determine matrix C by adding matrix A to matrix B, has already been specified.

Based on the structure of the prototype statement, complete the following instructions in the spaces provided within the program:
1) Specify the correct call statement to this function
2) Write an appropriate function definition (header)
3) Write the line(s) of code which adds the corresponding matrix elements of A and B, and assigns the result to C (using the array pointer variables defined in the function).
4) Write the line(s) of code which prints each element of the resulting matrix using 10 spaces and 2 places of precision

#include<stdio.h>
#define N 3 //Maximum matrix dimension

// Function Prototypes
void addmat(int matdim, double inmat1[][N], double inmat2[][N], double outmat[][N]);

void main(void)
{ /* begin main */
 int dim = 3; //identifies dimension of square matrices
 double A[][N] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; //MATRIX A
 double B[][N] = {9, 8, 7, 6, 5, 4, 3, 2, 1}; //MATRIX B
 double C[N][N]; //MATRIX C, result of operation chosen

 } /*end main */

/* Function "addmat" */

{ int i, j;
 for (i=0; i<dim; i++)
 {
 for (j = 0; j < dim; j++)
 {
 // Enter code to add matrices
 // Enter code to print matrices
 }
 }
 printf("\n");
}
5) **(15 Points)** Respond to the following:

a. Write the line of code which defines a global constant named `SIZE` with a value of 10…

b. Write one line of code which declares a one dimensional array called `fractions` that contains numbers of type double, and which is initialized to have 10 elements equal to zero…

c. Write the code which assigns the value 3.333 to the seventh element of the array `fractions` …

d. Given the array `fractions` as defined and modified above, what is the output of the following piece of code *(`Pay attention to formatting`)*

   ```c
   for (x = 5; x <= SIZE-2; x=x+1)
       printf("fractions[%d] = %lf\n", x, fractions[x]);
   ```

e. What prints when the following group of C statements are executed as part of a larger program. You may assume that the larger program is correctly initialized?

   ```c
   char s1[20] = "green";
   char s2[20] = "hamburgers";
   char s3[15] = "and"

   printf("%s\n%c%c%c\n%s\n%c%c%c\n", s1,s2[7],s2[6],s2[6],s2[9],s3,s2[0],s2[1],s2[2]);
   ```
The C program shown below is supposed to read several Fahrenheit-scale temperature values from the keyboard, convert each temperature to Celsius, and write the converted Celsius temperatures to a data file called “ctemps.dat.” The process is supposed to continue until the sentinel 9999 is entered from the keyboard.

The program contains six errors of which you are to find five. The lines are numbered 1-21 for you convenience. Circle each line number that contains an error, label it, and write the corrected version of each line at the bottom of the page.

```c
/* Fahrenheit to Celsius temperature conversion */
#include <stdio.h>

main()
{
    double F, C;
    FILE fpt;
    fpt = fopen("ctemps.dat", "r");
    /* enter first temperature */
    printf("\nTemperature, in degrees F: ");
    scanf("%lf", F);
    while (F != 9999) {
        C = (5.0 / 9.0) * (F - 32.0);
        fprintf("Temperature, in degrees C: %lf\n", C);
        /* enter next temperature */
        printf("\nTemperature, in degrees F: ");
        fscanf("%lf", &F);
    }
    printf("\nBye, Have a Nice Exam!\n");
    fclose("ctemps.dat");
}
```

Corrected error 1

Corrected error 2

Corrected error 3

Corrected error 4

Corrected error 5
7) (10 points) Write the screen display for the following script and associated function in the space provided.

```c
#include <stdio.h>
void confuse4(float *pa, float *pb);
main()
{
    float a=3.2, b=5.1, temp;
    printf("a = %f  b= %f\n",a,b);

    confuse4(&a, &b);
    printf("a = %f  b= %f\n",a,b);
}
void confuse4(float *pa, float *pb)
{
    float temp;
    temp=*pa;
    *pa=*pb;
    *pb=temp;
}
```

<table>
<thead>
<tr>
<th>Display #</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>