Pitt | Swanson Engineering

Since its founding in 1893 by two legends, George Westinghouse and Reginald Fessenden, the Department of Electrical and Computer Engineering at Pitt has excelled in education, research, and service.  Today, the department features innovative undergraduate and graduate programs and world-class research centers and labs, combining theory with practice at the nexus of computer and electrical engineering, for our students to learn, develop, and lead lives of impact.





Jun
18
2018

Swanson School professors capture award to improve engineering instruction and learning

Electrical & Computer, Industrial

PITTSBURGH (June 18, 2018) … When imagining a college classroom, one might imagine a professor standing at a podium and lecturing a room full of students taking notes. A pair of professors from the University of Pittsburgh want to reimagine this simplistic approach with a more interactive experience. Renee Clark, research assistant professor of industrial engineering, and Sam Dickerson, assistant professor of electrical and computer engineering, hope to impact education at Pitt’s Swanson School of Engineering through widespread propagation of active learning. In an effort to strengthen the role of teaching at Pitt, the Provost’s Advisory Council on Instructional Excellence (ACIE) created the Innovation in Education Awards Program to support faculty proposals which aim to reinvent traditional classroom instruction. Clark and Dickerson received one of eight awards this year for their project. “With active learning, we ask students to do something in the classroom beyond just listening to a lecture and taking notes,” explained Clark. “Students should be engaged and interacting with class content. Whether through brainstorming solutions to a problem, solving calculations in a group, or writing a one-minute reflection at the end of class, the goal is to have professors take a step back from lecturing and allow students to participate in the lesson. This promotes critical thinking and improves knowledge retention” Clark began working with Dickerson in July 2016 after they attended a Swanson School active learning workshop. They decided that they wanted to take their experience a step further and coach other instructors in how they can implement what they learned from this workshop in their classrooms. Clark and Dickerson’s project will begin this summer with a cohort of nine professors. This pilot group will work to implement simple active learning activities for their courses in two engineering departments (IE and ECE). Clark said, “We want to create a supportive learning community where we can exchange ideas and plans for the use of active learning.” Clark and Dickerson will coach each of the professors throughout the school year by observing their classrooms and giving feedback. At the end of the year, they will reunite the professors for a focus group to further improve their model for future participants. While there are many useful advanced active learning techniques, Clark and Dickerson plan to start simple. Dickerson’s implementation of the “think, pair, share” activity in his classroom demonstrates the success of this approach. He explains, “Rather than starting a class with an example and running through it, you give the students a problem, allow them to individually think about it, then ask them to come up with a solution as a group.” He discovered that using this activity changed the dynamic of his classroom. He said, “It became completely normal for students to speak up when they didn’t understand a concept or offer help to peers who were struggling with certain topics.” The ease of execution is a selling point for instructors who may debate changing their classroom structure. “Many professors do not have the time for more-involved active learning so we are sharing simple activities that require little preparation,” Clark said. “Instructors can introduce these methods on the fly or in response to a lack of classroom interaction. It is easy to stop a lecture and allow students to think about what they’re learning.” Dickerson has found that using these activities has been beneficial to more than just the students. He said, “Using active learning has helped me reflect on the way I teach; what I thought were easy concepts, were not. This strategy has allowed me to reevaluate my lessons and improve student comprehension.” Clark and Dickerson have had positive feedback on their efforts and found that students quickly become comfortable in this kind of environment. Based on data collected over the past two years, simple active learning has also positively impacted exam scores. This response encouraged them to apply to the Innovation in Education program and adapt their experience into a school-wide effort. Dickerson said, “Although these types of teaching techniques work well, the number of adopters is low. We want to change that.” The overall goal of this project is to have other Swanson School professors adapt this successful model to their classrooms. They hope to enhance student engagement, increase information retention, and improve students’ ability to use gained knowledge. “We want to make classrooms more learner-centered. In a teacher-centered environment, the focus is on content delivery. With a learner-centered classroom, we switch the spotlight to the student,” said Clark. “With simple active learning, class may still be lecture based, but you add some elements to make the students more active and turn the focus on them.” ###

Jun
7
2018

Capturing light in a waveguide array

Electrical & Computer

Originally published by Penn State University Eberly College of Science. Reposted with permission. UNIVERSITY PARK, Pa. — Cheaper and more efficient photonic devices, such as lasers, optical fibers and other light sources, may be possible with confined light that is unaffected by imperfections in the material that confines it, according to new research. A team of physicists and engineers from Penn State, the University of Pittsburgh and the University of Illinois have demonstrated in a proof-of-concept experiment that they can contain light in such a way that makes it highly insensitive to defects that might be present in a material. The results of the research appeared online on June 4 in the journal Nature Photonics (DOI: 10.1038/s41566-018-0179-3). “Photonic technology involves the generation, transmission and manipulation of light, and it is used ubiquitously across industries,” said Mikael Rechtsman, the Downsbrough Early Career Assistant Professor of Physics at Penn State and the leader of the research team. “It underlies the fiber optic network that forms the skeleton of the internet; solar cells used in the generation of sustainable energy; and high-power lasers used in manufacturing, among many other applications. Finding a way to confine and manipulate light so that it is insensitive to defects could have a huge impact on this technology. To confine the light, the researchers used a complex lattice structure composed of “waveguides” precisely carved in glass. These waveguides act like wires, but for light instead of electricity. In this structure, light enters at one end of the waveguide and gets trapped and confined as it propagates forward through the wires. There, the trapped light becomes immune to imperfections in the positions of the waveguides, and thus significant imperfections in the structure can be tolerated. “The light becomes insensitive because of the phenomenon of ‘topological protection,'” said Rechtsman. “This concept has been used extensively in the context of solid-state electronic physics. The waveguide structure is a photonic analogue of the so-called ‘topological crystalline insulators,’ and this form of topological protection can potentially be used across a range of photonic devices, including in nano-scale lasers, specialized nonlinear optical fibers, and for robustly and precisely coupling between photons and electrons for manipulating quantum information.” "From the perspective of photonic engineers, this is an wonderful learning opportunity to see the connections between lightwave engineering at length scale of micrometers, and quantum mechanics that typically deals with electron waves at length scale 10,000 times smaller," noted Kevin P. Chen, Professor of Electrical and Computer Engineering at the University of Pittsburgh Swanson School of Engineering. "It's also a fine example of precision laser manufacturing that took three generations of graduate students to perfect." Confining light in this way could make many photonic devices both more efficient and cheaper to produce. Beyond that, this is an example of the potentially cross-disciplinary — uniting photonics and solid-state electronics — use of topological protection and demonstrates the broad applicability of this phenomenon beyond its conception in electronic solid-state physics. “In photonics, it is extremely important to be able to trap light and confine it to very small spaces,” said Rechtsman. “It compresses the maximum amount of optical power into the smallest area or volume inside a material, making it interact more strongly with the material, and thus it is more efficient at whatever it is meant to do. A major difficulty with doing this has been that strong confinement brings with it extreme sensitivity to any imperfections in the material, which can often either inhibit efficiency or make the device very expensive to fabricate. Our results suggest that we can overcome this difficulty.” In addition to Rechtsman, the research team includes Jiho Noh and Matthew J. Collins at Penn State; Wladimir A. Benalcazar and Taylor L. Hughes at the University of Illinois at Urbana-Champaign; and Sheng Huang and Kevin Chen at the University of Pittsburgh. The research was funded by the National Science Foundation, the Penn State Materials Research Science and Engineering Center, the Alfred P. Sloan Foundation, and the Office of Naval Research Young Investigators Program. ###
Sam Sholtis, Penn State University
Apr
24
2018

Pitt’s Department of Electrical and Computer Engineering appoints two alumni as new undergraduate program directors

Electrical & Computer, Office of Development & Alumni Affairs

PITTSBURGH (April 24, 2018) … The Department of Electrical and Computer Engineering in the University of Pittsburgh’s Swanson School of Engineering announced new leadership for its undergraduate programs. Samuel J. Dickerson, assistant professor and associate director of computer engineering, was promoted as the program’s full director. Robert Kerestes, assistant professor, was named director of the electrical engineering program. Dr. Dickerson succeeds Alex K. Jones, professor of computer engineering, who last year was appointed associate director of the National Science Foundation (NSF) Center for Space, High-performance, and Resilient Computing (SHREC) at Pitt. Dr. Kerestes succeeds Irvin Jones Jr., who will continue in the department as assistant professor. Both Dickerson and Kerestes are triple alumni of the Swanson School, each having earned a bachelor’s, master’s and PhD in electrical and computer engineering. “Professors Dickerson and Kerestes are two of the finest teachers in our department, two of our most active in education research, and they bring a deep commitment to guiding students in the COE and EE undergraduate programs in ECE,” explained Alan George, the R&H Mickle Endowed Chair and Department Chair, and SHREC Director. “Each is an alumnus of the program that he now directs, with a special perspective on the needs of our students and how best to support their academic growth and success. “They are both taking over from the strong leadership of Alex and Irvin, who have helped to shape the undergraduate programs and nurture them through incredible expansion. I cannot thank them enough for their continued dedication to our students, as well as their contributions to our research programs.”About Dr. DickersonDr. Dickerson’ research focuses on electronics, circuits and embedded systems and, in particular, technologies in those areas that have biomedical applications. He has published in several journals research on the design and simulation of mixed-signal integrated circuits and systems that incorporate the use of both digital and analog electronics, in particular optics, microfluidics and devices that interface to the biological world. Prior to joining the faculty in 2015, he was a co-founder and the president of Nanophoretics LLC, where he led the research and development of a novel dielectrophoresis-based “lab-on-chip” technology for rapidly detecting drug-resistant bacteria strains. He has received three patents based on the technology, and in 2013 received the Pitt Innovator Award for his research. Because of his focus on undergraduate engineering education, he was one of 48 innovative engineering faculty members invited to the National Academy of Engineering’s 2016 annual Frontiers of Engineering Education (FOEE) symposium. The FOEE engages young engineering faculty who are developing and implementing innovative educational approaches in a variety of engineering disciplines where they can share ideas, learn from research and best practice in education, and leave with a charter to bring about improvement at their home institution.Dr. Dickerson received his B.S. in computer engineering (2003) and M.S. (2007) and PhD (2012) in electrical engineering from Pitt. About Dr. KerestesDr. Kerestes’ research is balanced between the classroom and the laboratory: engineering education and stem curricula, mathematical modeling and simulation of physical systems, power systems control & stability, electric machinery, power quality and renewable energy technologies. Prior to his appointment as assistant professor in 2016, he was an adjunct professor in the Department of Electrical and Computer Engineering and Senior Engineer at Emerson Process Management, where he was project lead for the dynamic simulation of thermal power plants, electrical power systems and microgrids. He is a veteran of the United States Navy (Active Duty and Naval Reserve), having served as Third Class Petty Officer, and has published research on medium voltage DC architecture and infrastructure, and energy storage systems. He received his bachelor’s (2010), master’s (2011) and PhD (2014) in electrical engineering from Pitt. ###

Apr
16
2018

ECE Chair Alan George presents Inaugural Lecture

Electrical & Computer

In celebration of his appointment as the Ruth and Howard Mickle Endowed Chair of Electrical and Computer Engineering, University of Pittsburgh Provost Patricia Beeson hosted Alan George's Inaugural Lecture on Thursday, April 5.

Apr
9
2018

Request your tutor

Electrical & Computer

Read the full story at Pittwire. University of Pittsburgh administrators traditionally thought that student success was reflected primarily in graduation rates, said Patricia E. Beeson, Pitt’s provost and senior vice chancellor. They later found, she said, that measuring student success required a multifaceted approach that considered experiences — for example, internships and study abroad — that catered to students’ individual preferences. With this perspective in mind, Beeson and her colleagues in the Office of the Provost launched the Personalized Education Initiative to encourage faculty, staff and students to personalize the academic experience. The first recipients of grants from the Personalized Education Grants Program were recognized by Beeson at a March 26 reception. “As the higher education landscape and the needs of our students continue to evolve, our efforts to transform the student experience are setting a new standard,” said Beeson. “Through innovative uses of technology and novel approaches to teaching, advising and mentoring, Pitt is ideally positioned to provide national leadership in the area of personalized education.” According to Beeson, the initiative received 42 proposals; 17 projects were selected for funding ranging from $1,000 to $26,000 each. Request your tutor In his research on geographic information systems (GIS), Swanson School of Engineering faculty member Robert Kerestes has seen how programs like Google Maps and Yelp can match people to what they are looking for based on location. Kerestes, director of the electrical engineering undergraduate program and assistant professor of electrical and computer engineering, wondered if GIS was applicable to academics, too. He partnered with his colleagues Samuel Dickerson, director of the computer engineering undergraduate program and assistant professor of electrical and computer engineering, and Anita Persaud, director of retention. Together, they drafted a proposal for a real-time tutor sourcing application. The app, similar to ride-sharing apps like Lyft or Uber, would allow students to locate and request tutors near them that have academic expertise in a particular subject. At first, students would have access to a hand-picked pool of tutors, but the app would eventually allow people who are interested in serving as tutors to offer their services. Kerestes hopes to use the grant to allow students to use the app at no charge. In the initial phase of the project, the app’s use will be limited primarily to members of the Swanson School. Kerestes imagines expanding the project to other parts of the University and even outside Pitt at a later phase.
Katie Fike, University Communications

Upcoming Events


back
view more