Pitt | Swanson Engineering

Welcome to the Civil and Environmental Engineering Department’s website!  We are glad you are here.  Please enjoy exploring and learning about our department.  If you have questions, do not hesitate to contact us.

The University of Pittsburgh is proud of its history and tradition in civil and environmental engineering education, reinforced by a faculty who are dedicated to their students.  The curriculum prepares students to tackle today’s most eminent engineering, environmental and societal challenges.  Undergraduate and graduate students (M.S. and PhD) have the opportunity to study and conduct research in a diverse range of areas, including structures, geotechnical and pavements, water resources, transportation, mining, environmental, water resources, sustainability and green design, and construction management.  Graduates of the department have become leaders in our profession, serving with government, private consulting firms and contractors as well as research in private industry and academic institutions.

The department offers a Bachelor of Science in Engineering degree that may be obtained by majoring in civil engineering or a new major in environmental engineering.  You can find more information on the requirements for each degree under the undergraduate tab.  The civil engineering major has been continuously accredited by ABET since its inception in 1936.  The environmental engineering major was established in 2015 in response to strong demand from students, industry and government agencies and will seek ABET accreditation in the Fall of 2017.  The Department also offers minors in civil engineering and environmental engineering to students majoring in other disciplines.

The undergraduate curriculum culminates in a capstone design project, which enables students to put into practice what they learned in the classroom, and offers a direct connection to local civil and environmental engineering professionals who consult with students throughout the semester on their projects. 

The department employs world-class faculty, offers access to first-rate educational and research facilities and partnerships with industry, all of which provide the necessary edge for our graduates to discover and pursue satisfying careers that have profound impact on meeting the current and any future challenges for the society. 





Jan
19
2017

Geosciences-Inspired Engineering

Chemical & Petroleum, Civil & Environmental

PITTSBURGH (January 19, 2017) … The Mackenzie Dike Swarm, an ancient geological feature covering an area more than 300 miles wide and 1,900 miles long beneath Canada from the Arctic to the Great Lakes, is the largest dike swarm on Earth. Formed more than one billion years ago, the swarm’s geology discloses insights into major magmatic events and continental breakup. The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today’s modern world. To explore how naturally-occurring dike swarms can lead to improved methods of oil and gas reservoir stimulation, the National Science Foundation (NSF) Division of Earth Sciences awarded a $310,000 award to Andrew Bunger, assistant professor in the Departments of Civil and Environmental Engineering and Chemical and Petroleum Engineering at the University of Pittsburgh’s Swanson School of Engineering. Dike swarms are the result of molten rock (magma) rising from depth and then driving cracks through the Earth’s crust. Dike swarms exhibit a self-organizing behavior that allows hundreds of individual dikes to fan out across large distances. Although petroleum engineers desire to achieve the same effect when creating hydraulic fractures for stimulation of oil and gas production, the industrial hydraulic fractures appear far more likely to localize to only one or two dominant strands. This localization leaves 30-40 percent of most reservoirs in an unproductive state, representing an inefficient use of resources and leading to unnecessary intensity of oil and gas development. In the study, “Self-Organization Mechanisms within Magma-Driven Dyke and Hydraulic Fracture Swarms,” Bunger will take a novel approach to understanding the mechanics of fluid-driven cracks, which he refers to as “geosciences-inspired engineering.” Like the growing field of biologically-inspired engineering, Bunger will be looking to processes in the natural world to better understand the constructed or engineered world. “I would like to challenge myself and the geoscience community to look at naturally occurring morphologies with the eye of an engineer,” says Bunger. “The first part of the study will involve developing a mechanical model to explain the behavior of the dike swarms. We are borrowing from a theoretical framework developed in biology called ‘swarm theory,’ which explains the self-organizing behavior of groups of animals.” Swarm theory, or swarm intelligence, refers to naturally and artificially occurring complex systems with no centralized control structure. The individual agents in the system exhibit simple or even random behavior, but collectively the group achieves emergent, or “intelligent,” behavior. “One of the hallmarks of self-organizing behavior within swarms was recognized by swarm theory’s earliest proponents, who were actually motivated by developing algorithms to simulate flocks and herds in computer animation,” Bunger explains. “They proposed that all swarming behavior can be tied to the presence of three basic forces. One of these leads to alignment of the members with each other – it is what makes a flocking bird fly in the same direction as its neighbors. A second force is associated with repulsion – it keeps birds within a flock from running into each other and knocking each other out of the air. The third force is attraction – an often instinctive desire of certain animals to be near other animals of their own species, typically for protection from predators.” “If you look at dike swarms,” Bunger continues, “They have been called ‘swarms’ for decades, but there has never been an effort to identify the mechanical origins of the three forces that are known to be present any place that swarming morphology is observed. When we view dikes in this way, we see that the alignment and repulsive forces have been recognized for years, although never placed in the broader context of their role in swarming. However, the origin of the attractive force is problematic. Why do all these dikes have any mechanical impetus to grow near each other? Because the mechanical origin of the attractive force has not been known, it is unclear why natural fluid-driven cracks – dikes – tend to exhibit swarming behavior while such an outcome is far less commonly observed in man-made fluid-driven cracks associated with hydraulic fracturing of oil and gas reservoirs.” “We will use computational models and analogue experiments, which use artificial materials to simulate the Earth’s processes, to develop a new theory of fluid-driven crack swarms,” says Bunger. “Through this advance, we would like to improve the stimulation methods used for oil and gas production. This will be a win-win for both industry and our society that depends upon the energy resources they produce. Industry will benefit from more efficient methods, and society will benefit from lower energy costs and a decreased environmental footprint associated with resource extraction.” In addition to a deeper understanding of the geological process that occur throughout Earth’s history, Bunger also sees his research impacting planetary research of Mars and Venus. Both rocky planets contain a large number of giant dike swarms. Understanding how the geometry of dike swarms relates to the conditions in the Earth’s crust at the time of emplacement will lead to a new method for ascertaining the little-known geological structure and history of Mars and Venus though analysis of the geometry of their many giant dike swarms. ### Photo above: Dr. Bunger in his Benedum Hall lab with the newly-installed compression frame he uses to simulate the high-stress environment deep inside the Earth.
Author: Matthew Cichowicz, Communications Writer
Jan
4
2017

CEE Graduate Student Lisa Stabryla Inducted into Carson Scholarship Fund Hall of Fame

Civil & Environmental

BALTIMORE, MD (January 4, 2017) … The Carson Scholars Fund (CSF) has announced Lisa Stabryla, graduate researcher and teaching assistant in the University of Pittsburgh’s Department of Civil and Environmental Engineering, will enter its second class of inductees to the Carson Scholars Hall of Fame. Stabryla will join four other Carson Scholar Alumni at the Maryland Awards Banquet in spring 2017 for recognition of their success and excellence in professional, academic and community efforts.The CSF has an alumni network of more than 4,000 members and introduced the Hall of Fame with 20 inductees last year in celebration of its 20th anniversary. Stabryla received a $1,000 college scholarship from CSF in 2010 for academic excellence and her dedication to serving the community. She earned a B.S. in engineering science from Pitt and is currently pursuing a PhD in environmental engineering under the advisory of Dr. Leanne Gilbertson, assistant professor of civil and environmental engineering at the Swanson School of Engineering.“We are very proud of Lisa and delighted that her dedication as a student, researcher, teacher, mentor and leader continues to be recognized by the Carson Scholars Fund,” said Gilbertson.About Lisa StabrylaStabryla joined Dr. Gilbertson’s lab in 2016 as a graduate researcher and teaching assistant. Previously she worked as an undergraduate student researcher in the Bibby Lab and the Mascaro Center for Sustainable Innovation (MCSI). During a co-operative education position with Cardno ChemRisk in Pittsburgh, PA, she co-authored a scientific publication published in Regulatory Toxicology and Pharmacology. She has also interned with the Allegheny County Office of the Medical Examiner and the McGowan Institute of Regenerative Medicine at Pitt.In addition to her many academic accomplishments, Stabryla volunteered for the Fund for Advancement of Minorities through Education as a MATHCOUNTS instructor. In this role, she developed creative methods for teaching inner city African American middle school students in Pittsburgh. She volunteered with the INVESTING NOW Summer Enrichment Program at Pitt and helped introduce underrepresented high school students to sustainability concepts through building miniature wind turbines and solar cells. Stabryla also participated in the MCSI Teach-the-Teacher Workshop to help engage middle school teachers to adopt sustainability and engineering practices into the classroom. ###
Matt Cichowicz, Communications Writer
Dec
15
2016

Pitt’s Mascaro Center Announces 2017 Faculty Fellows in Sustainability

Civil & Environmental, Electrical & Computer

PITTSBURGH (December 15, 2016) … The University of Pittsburgh Office of the Provost and Mascaro Center for Sustainable Innovation have named the 2017 Faculty Fellows in Sustainability: Kyle Bibby, assistant professor of civil and environmental engineering; Emily Elliott, associate professor of geology and environmental science; Shanti Gamper-Rabindran, associate professor of environment, health and development economics and policy; and Alex Jones, associate professor of electrical engineering and Director of Pitt’s Computer Engineering Program.The Faculty Fellowships in Sustainability serve to enhance the University’s mission of interdisciplinary excellence in research and education. The 2017 Fellows represent the Swanson School of Engineering, the Kenneth P. Dietrich School of Arts and Sciences and the Graduate School of Public and International Affairs. Fellows receive $25,000 to support efforts to contribute research, inside and outside of their fields, and may decide to renew their fellowships for one additional year. Other potential expectations for faculty fellows include taking the lead on large grant proposal submissions; establishing teams for new research collaborations; developing community engagement projects and sustained partnerships with community organizations; designing a new course; and organizing workshops, symposia and exhibitions on sustainability. ###
Matt Cichowicz, Communications Writer
Dec
5
2016

Reaching for the Sky: Pitt’s Department of Civil & Environmental Engineering to host noted structural engineer Ron Klemencic for 2017 Landis Lecture

Civil & Environmental

PITTSBURGH (December 5, 2016) … Ron Klemencic, P.E., S.E., Hon. AIA, chairman and CEO of Magnusson Klemencic Associates, will deliver the 2017 Landis Lecture at the University of Pittsburgh’s Swanson School of Engineering. Presented by the Department of Civil and Environmental Engineering, Klemencic’s lecture will examine engineering marvels that seemingly defy the laws of nature in height, span or form. The lecture will take place on February 2, 2017 at 4:00 p.m. at the University Club, Ballroom A in Oakland.“Structural engineering and improved building materials have transformed the limits of what we thought possible to construct while taking into consideration the risk of natural disasters such as high winds, storms and earthquakes,” noted Kent A. Harries, PhD, FACI, FIIFC, P.E., Bicentennial Board of Visitors Faculty Fellow, associate professor of structural engineering and mechanics at Pitt and the event’s director. “Ron is recognized around the world for his innovation in structural engineering and cost-effective design of megatowers. We are proud to name him the 2017 Landis-Epic Lecturer and hope that our region’s architects and engineers will join us on February 2.” In “Beyond Theory: Real Life Adventures in Structural Engineering,” Klemencic will discuss traditional examples of captivating and imaginative buildings such the Great Pyramid, the Eiffel Tower and the Golden Gate Bridge as well as his experiences developing some of the world’s tallest buildings, including the Kingdom Tower in Jeddah, Saudi Arabia, which is currently under construction and planned to be the first structure to surpass one-kilometer in height. The Landis Lectureship was established by the Department of Civil and Environmental Engineering in 1991 in honor of Donald H. Landis, president of Epic Metals Corporation and a 1952 graduate of Pitt. Mr. Landis is a nationally recognized as a leader in the design and construction of cold-formed steel structures. The distinguished lectureship is made possible through the generosity of Mr. Landis.About Ron KlemencicKlemencic received his BS in civil engineering from Purdue University in 1985 and his master’s degree in structural engineering from the University of California at Berkeley in 1986. He served on Purdue’s Civil Engineering Advisory Board and is a fellow of the American Concrete Institute. He is past chairman and current fellow of the Council on Tall Buildings and Urban Habitat. He oversees 180 engineers and work on hundreds of concurrent projects in 24 states and 24 foreign nations. He pioneered the development of “Performance-Based Seismic Design” (PBSD) methodology for high-rise buildings and leads the field with 38 PBSD buildings, including the 1,070-foot Salesforce Tower in San Francisco, which broke ground in March 2013. Klemencic’s international work on tall buildings includes the 112-story Doha Tower and Convention Center in Qatar; the 49-story 21st Century Tower in Shanghai; the 73-story High Cliff Apartments in Hong-Kong; and the Peer Review of the one-kilometer-tall Kingdom Tower in Jeddah, Saudi Arabia. ###
Author: Matt Cichowicz, Communications Writer
Nov
29
2016

Going Viral

Civil & Environmental

PITTSBURGH (November 29, 2016) … Believed by some to be the most abundant known virus in the human digestive system, cross-assembly phage (shortened to crAssphage) remained undetected until researchers sorting through hundreds of thousands of lines of DNA accidentally stumbled upon its circular viral genome of about 97,000 base pairs. A study published in the journal Nature Communications officially introduced crAssphage to the world in the summer of 2014.Despite the bad rap of most headline-making viruses, crAssphage can’t make you sick. It’s a bacteriophage, which means it infects bacteria, and it may actually help to keep you healthy by feeding on potentially harmful gut bacteria. Because it resides exclusively in the human digestive tract, crAssphage may also serve as an accurate indicator of viral contamination in food and water. Thanks to a recent award by the Center for Produce Safety (CPS), a researcher at the University of Pittsburgh’s Swanson School of Engineering will investigate whether crAssphage can indicate contamination in water used for irrigating crops.“Viruses, not bacteria, pose the greatest risk to people exposed to contaminated water; however, water quality is currently monitored using bacterial indicators,” said Kyle Bibby, assistant professor of civil and environmental engineering at Pitt and principal investigator. “Bacteria are actually poor representatives of viruses in water samples. Ideally, we would use viruses, but many viral indicators are limited because they can be difficult to detect in the environment. The abundancy of crAssphage in sewage makes it a promising candidate for finding pathogens.”Dr. Bibby began studying crAssphage after receiving a National Science Foundation grant designed to use the bacteriophage to track the source of pollution in waterways. The ongoing study is an attempt to achieve the ultimate goal of the Clean Water Act, which seeks to eliminate environmental pollution until all of the United States waterways are “fishable and swimmable.”Waterways contaminated with human fecal matter are particularly threatening to human health because they are more likely to contain pathogens such as Salmonella, Hepatitis A and Norwalk-group viruses. Rather than testing for each pathogen individually, a technique called “microbial source tracking” can determine if a water sample is contaminated by using an indicator microorganism likely to inhabit the same environmental conditions as the pathogens. Because crAssphage’s abundance in human feces, its presence in a water sample is likely to serve as a good indicator of fecal contamination and associated pathogens.Finding an accurate and abundant indicator of contamination in water used to irrigate crops could have an enormous impact on the fresh produce industry. But first, Dr. Bibby and his team will need to prove crAssphage to be a reliable indicator for contamination. The study, “Developing Cross-Assembly Phage as a Viral Indicator for Irrigation Waters,” will sample irrigation water and measure crAssphage, viruses and other indicators that establish a correlation between crAssphage and pathogens.“We will need to take enough water samples to determine if crAssphage appears in irrigation water,” Dr. Bibby explained. “The next step would be taking a retrospective look at contamination outbreaks and finding a correlation between crAssphage’s presence and the spread of disease. Having an effective viral marker for detecting pollution would greatly increase public safety and produce quality.” ### Image above: Dr. Bibby (left) with PhD student Elyse Stachler.
Author: Matt Cichowicz, Communications Writer

Upcoming Events


back
view more